
c. 3

SANDIA REPORT
SAND96–1113 ● UC-706
Unlimited Release
Printed April 1996

Sandia Airspace Recording System (SARS)
Software Reference Manual

John L. Tenney

Issued by Sandia National Laboratories, operated for the United States
Department of EnergybySandiaCorporation.
NOTICE:Thisreport was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO BOX 62
OakRidge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy A05
Microfiche copy: AO1

SAND96-1113 Distribution
Unlimited Release Category UC-706
Printed April 1996

Sandia Airspace Recording System (SARS)
Software Reference Manual

John L. Tenney
Assessment Technologies Department

Sandia National Laboratories
Albuquerque, New Mexico 87185

Abstract

SARS is a data acquisition system designed to gather and process radar data from aircraft
flights. A database of flight trajectories has been developed for Albuquerque, NM and
Amarillo, TX. The data is used for safety analysis and risk assessment reports.

To support this database effort, Sandia developed a collection of hardware and software
tools to collect and post process the aircraft radar data. This document describes the data
reduction tools which comprise the SAEW, and maintenance procedures for the hardware
and software system.

Acknowledgments

The author wishes to acknowledge the contributions Tom Lin and Norm Grandjean of
Sandia National Laboratories made to the SARS project. They developed and tested many
of the algorithms that make up the SARS.

Bob Roginski of Sandia National Laboratories provided sorting algorithms and technical
consulting throughout the SARS project.

David Skogmo of Sandia National Laboratories provided hardware, software, and
configuration support for the SARS project.

ii

Table of Contents

1. Introduction ... 1

2. Overview of SARS 1

3. Data Collection Sollware 5

3.1. Zone 4 Software Description ...5
3.2. Radar File Formats ..6

3.2.1. Beacon File Fonat ..6
3.2.2. Filtered Primary Radar Fomat ...8
3.2.3. Unfiltered Primary Radar Fomat ...8

3.3. Zone 4 Compile instructions .. 10
3.4. Additions/Modifications to Zone 4 Software ..ll

3.4.1. Green Strip/Electronic File Time Correlation ..ll
3.4.2. Zone 4 Display Screen ...l3

3.5. Zone 4 Software Diagram .. 14
3.6. Zone4 Module Description ... 14

3.6.1. ZONE4A.BAT Ele .. 15
3.6.2. Zonea Executable File ... 16

4. Postprocessing Software 21

4.1. Sanitize Software Description ..2l
4.2. Sanitize Calling Sequence ...22
4.3. Sanitize Subroutine Description ...22
4.4. Sortdata Software Description ...24
4.5. Sortdata Calling Sequence ..24
4.6. Sortdata Subroutine Description ..25
4.7. Sortflt Software Description ...27

4.7.1. Flight Index File Description ...27
4.7.2. Beacon Index File Description ...29
4.7.3. Sortflt Repott File Description ..3o

4.8. Sortflt Include File ..
4.9. Sortfit Calling Sequence>..E
4.10, Sortflt Subroutine Description ..35

5. Aircraft Viewing Software .. 41

5.1. Plotflt Software Description ...41

5.2. Main Program Description ...42
5.3. Main Program Calling Sequence ... 43

5.4. Plot Display Mode ..44
5.4.1. Overview ..44
5.4.2. Plot Display Process ..45

5.5. Data Input Mode 46

5.5.1. overview ..46
5.5.2. Data Input Process.. ... 47

5.6. Plotflt Include File .. 48

5.7. Plotflt Function Descriptions ..
5.7.1. Main Function Headers ...
5.7.2. Plot Display Function Headers ...54
5.7.3. Data Input Function Headers ..c..s.....55
5.7.4. Plot Display and Data Input Function Headers ..65
5.7.5.General Purpose Function Headem ...69

5.8. Pantex Plot Projection ...75
5.9. VGA Pixel Coordinate System ...78

6. References 81

. . .
111

...-----

:.

;-.

,.

FAA Radar

Ww
E?lPc

Disk m
..............................-

I
..............................----------

....

.

QZone4

.......................

ClSanitize

QSortdata

ElSortflt

i-

........................

Plotflt

mHardware

.....................

..

1
Data

Collection
Software

4

..........................

Post-
processing
Software

---1Radar
Viewing
Software

Figure 2-1. SARS Hardware, Data Collection and Post-processing System

o

The hardware interface diagram is shown in Figure 2-2. The interface is documented in
[Ref. 1].

Radar MTI Video

Pretrigger

Azimuth Reference Pulse

Azimuth Change Pulse

Beacon Video —

— —

Radar
Digitizer

I I

outputs

1

4 Beacon
Digitizer

Figure 2-2. FAAEWRS Interface

3

Pc

Intentionally Left Blank

4

3. Data Collection Software

3.1. Zone 4 Software Description

Zone4 is the name of the primary data collection software. It is a modified version of the
security detection software named RAMS (Radar Airspace Monitor System). This
program processes radar signals from the FAA air traffic control center and converts the
signals into graphics (see Figure 3-l). The flight paths consist of x,y,z coordinate
information. The z component represents the elevation. These flight paths are saved to
an ASCII formatted file while the graphics is displayed. The format is described in section
3-2.

* Zone4 * <w: 1-
.“,,

Display
Sand ia Peak

Zone4 Menu
r-start rain mode
s - stop rain mode
C -chg. bkup disk
d - end change disk
q - quit program

.

12 nm i

;LwIs:$’b

Tue Ott 100713:43 1

Figure 3-1. Zone 4 Output Screen

Figure 3-1 shows the flight trajectories plotted on the VGA display. This is a subset of
actual flight data over Albuquerque on October 7, 1995. On the display, flight 4254:61 is
plotted as a series of pixels or points near the center of the screen. The Be{con ID for this
flight is 4254 and the elevation is 61 times 100 = 6100 feet. This flight is a takeoff
heading to the southwest.

Zone 4 a real time program; the air traffic is plotted as it enters the airspace with
minimum latency. The operator interface is shown on the left side of the screen. The
additions and modifications to the original RAMS program are described in section 3.4.

6

3.2. Radar File Formats

Two types of radar are processed: Beacon and Primary. Beacon radar requires that the
aircraft have a transponder in order to communicate with the air traffic tower. The
Beacon code is a four digit number that is unique for a given time fkme (e.g. 4254). Most
commercial flights and large commuter aircraft use a Beacon IDs to identi~ the aircraft.
Primary radar reflects off the skin of the plane. All aircraft, including commercial flights,
are tracked by primary radar. Although not shown in Figure 3-1, primary radar will plot
as a series of white dots near the trajectory of the Beacon radar path. The Beacon
trajectory will plot as a series of blue dots. Small aircraft may or may not have a Beacon
path, but it will always have the primary path plotted.

As a flight passes overhead, the radar data is captured to a file as it is displayed. At the
end of the day, the file is closed and the next day is opened. Three types of radar files are
saved for fbrther analysis: Beacon, filtered primary, and unfiltered primary.

3.2.1. Beacon File Format

The Beacon radar file name use this format: BYYMMDD.DAT (e.g., B951107.DAT), where
B is the first character, followed by the year, month, and day. An example of an unsorted
Beacon file is shown is Table 3-1.

951115145900s
951115145901s
951115145902S
951115145903s
951115145904s
951115145905s
951115145900P
951115145901P
951115145902P
951115145903P
951115145904P
951115145905P
951115145900P
951115145901P
951115145902P
951115145903P
951115145904P
951115145905P
951115145900P

145925
145925
145925
145925
145925
145925
145929
145929
145929
145929
145929
145929
145934
145934
145934
145934
145934
145934
145938

+1.33e+04
+1.56e+04
-1.50e+04
-2.48e+04
-4.47e+03
-3.94e+03

+1.33e+04
+1.49e+04
-1.63e+04
-2.40e+04
-3.88e+03
-3.93e+03

+1.32e+04
+1.42e+04
-1.80e+04
-2.26e+04
-2.78e+03
-3.66e+03

+1.38e+04

+1.79e+04
-3.51e+04
-2.65e+04
+4.90e+03
+4.98e+03
+5.89e+03
+1.89e+04
-3.48e+04
-2.62e+04

+4.99e+03
+4.83e+03
+5.89e+03
+1.97e+04
-3.52e+04
-2.57e+04
+4.90e+03
+4.39e+03
+6.07e+03
+2.lle+04

0452 64
0423 54
4357 77
0743 61
2602 50
7243 50
0452 64
0423 54
4357 75
0743 60
2602 50
7243 50
0452 65
0423 54
4357 73
0743 61

2602 50

7243 50

0452 66

Table 3-1. Beacon File Format

6

Each record in the Beacon file is fixed length 49 bytes.

The flight records are structured as follows:
Column (1:2)
Column (3:4)
Column (5:6)
Column (7:8)
Column (9:10)
Column (11:12)
Column (13:13)
Column (15:16)
Column (17:18)
Column (19:20)
Column (22:30)
Column (32:40)
Column (42:45)
Column (47:49)

Year
Month
Day
Start hour of flight (GMT)
Start min. of flight (GMT)
Flight sequence number (00 through 99)
(S)tart, (Progressive point, or (E)nd of flight
Time 1- hour of flight
Time 1- min. of flight
Time 1- seconds of flight
X coordinate - true north (in feet)
Y coordinate - true north (in feet)
Beacon ID or squawk code
Elevation * 100 (in hundreds of feet)

Columns 1 through 13 are referred to as the unique ID of the flight. Every recorded flight
will have one unique ID. This unique string is uselld for sorting data.

Column 13 determines the complete path of a flight. The S(start), P..P..,..., E(end)
sequence must be set for a good flight. The first 13 characters of each record (e.g.,
940201101301S) are used throughout the programs as a unique identifier. The flight
sequence number ranges from 00 through 99. This means 100 maximum flights can be
recorded at one time.

The first record from Table 3-1 is identified by its individual components.

951115145900S 145925 +1.33e+04 +1.79e+04 0452 64

Column 1:2- (95) Year
Column 3:4- (11) Month
Column 5:6- (15) Day
Column 7:8- (14) Start hour of flight (GMT)
Column 9:10- (59) Start minute of flight (GMT)
Column 11:12- (00) Sequence number of flight
Column 13- (S) Start of flight
Column 15:16- (14) Time 1 recorded hour of data point (GMT)
Column 17:18- (59) Time 1 recorded minute of data point (GMT)
Column 19:20- (25) Time 1 recorded seconds of data point (GMT)
Column 22:30- (+1.33e+04) X coordinate true north (in feet)
Column 32:40- (+1.79e+04) Y coordinate true north (in feet)
Column 42:45- (0452) Beacon ID or squawk code of aircraft
Column 47:49- (64) Elevation * 100= 6,400 ft.

7

3.2.2. Filtered Primary Radar Format

Usually all objects made of metal will be picked up by primary radar. Filtered radar data
implies slow moving vehicles (e.g., trucks on a highway) are filtered from the raw data.

The filtered primary radar file name use this format: RYYMMDD.DAT (e.g.,
R951107.DAT), where R is the first character, followed by the year, month, and day. An
example of an unsorted, filtered primary radar file is shown is Table 3-2.

951115145900s
951115145901s
951115145902S
951115145903s
951115145900P
951115145901P
951115145902P
951115145903P
951115145900P
951115145901P
951115145902P
951 115145903P
951115145904s
951115145900P
951115145901P

145925
145925
145925
145925
145929
145929
145929
145929
145934
145934
145934
145934
145934
145938
145938

+1.36e+04
+1.55e+04
-1.50e+04
-2.51e+04

+1.36e+04
+1.50e+04
-1.64e+04
-2.41e+04

+1.37e+04
+1.41e+04
-1.82e+04
-2.29e+04
-5.46e+04

+1.37e+04
+1.36e+04

+1.84e+04
-3.49e+04
-2.67e+04

+5.00e+03
+1.92e+04
-3.52e+04
-2.64e+04

-t5.00e+03
+2.03e+04
-3.50e+04
-2.58e+04

+5.24e+03
+4.63e+04
+2.lle+04
-3.54e+04

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Table 3-2. Filtered Primary Radar Format

The format of the filtered primary radar file is the same as the Beacon format. Each
record is fixed length 49 bytes. This type of radar reflects off the skin of the aircraft; there
will not be a Beacon ID or elevation associated with the flight. These values are set to O
by default.

3.2.3. Unfiltered Primary Radar Format

Unfiltered radar will capture all moving objects, flocks of birds, and additional noise (e.g.,
radar antennas). These unfiltered files become very large. Eleven megabytes per day in
Albuquerque is typical.

The unfiltered primary radar file name use this format: PYYMMDD.DAT (e.g.,
P951107.DAT), where P is the first character, followed by the year, month, and day. An
example of an unfiltered primary radar file is shown is Table 3-3.

8

TIME= 14:59:15
658 261
347 373
961 577
309 636
691 728
795 1012
795 1630
442 1635
309 2076
397 2180
398 2184
743 2475
625 2756
392 3084
606 3460
903 3911

TIME= 14:59:20
660 273
351 356
946 571
309 636
697 726
807 1621
442 1648
309 2076
398 2216
397 2216
753 2497
623 2764
386 3089
903 3916

Table 3-3. Unfiltered Primary Radar Format

The format of this file is different from Beacon or filtered primary radar. Each flight
starts with a TIME=HH:MM:SS syntax. The points that follow are the x and y
coordinates of the flight path in screen pixels. The pixel values are converted within the
Zone4 program from true north coordinates to screen coordinates.

9

3.3. Zone 4 Compile Instructions

The Zone4 software is controlled from a batch file name ZONE4A.BAT. It is executed
from the command line in DOS: ZONE4A

A listing of ZONE4A.BAT for the Albuquerque radar follows:

@echo off
:Start
CALLRAMS
if errorlevel 1 SETDIG
if errorlevel 1 ZONEA
if errorlevel 1 goto bottom
SLEEP 180
rem ctlaltdl causes a warm reboot of the computer
goto start
CTLALTDL
:bottom
CTLALTDL
echo on

The words in capital letters are programs that are invoked from the batch file.
CALL RAMS dials up the digitizer at the local airport from a modem. SETDIG configures
the digitizer for Beacon and primary radar. ZONEA is the main program for data
collection. The SLEEP and CTIALTDL are programs that are used in case there is an
error in the previous programs. Errorlevel 1 represents success; the next program will run
only if the previous program finished successfully. If not, the computer will reboot.

ZONE4A is usually called fi-om the autoexec.bat file. The software resides in a directory
name zone4a on the recording computer. At the bottom of the autoexec.bat file there
should be two entries
cd zone4a
zone4a

The config.sys file in DOS should have the following entries:
fles=30
buffer=30

Note: To prevent memory conflicts, there should be no memory managers (e.g., himem.sys)
or other memory resident software (i.e., TSRS) loaded.

The Borland Turbo C++ 3.0 compiler for DOS was used to compile all of the programs
associated with Zone4. A project file was required for the zones.exe file. The path to
\TC \BIN must be set before using the compiler.
The following procedure creates the Zonea executable file:

10

Type in: TC
Select the OPEN PROJECT menu option
Select the ZONEA.PRJ file
Select the COMPILE menu option
Select the BUILD ALL option

3.4. Additions/Modifications to Zone 4 Software

The Zone 4 softwarewas modified from the original RAMS software for two specific
reasons. First, the original RAMS software was not set up to handle a continuous,
uninterrupted data stream. Zone 4 was created to handle user interrupts (i.e., disk
change) without losing any real time data. Zone 4 also handles real time backup to
multiple devices.

Second, the RAMS software was not set up to match the electronic data to the air traffic
flight strips (i.e., green strips). The green strips contain pertinent information for safety
analysts that is not contained in the electronic recorded data (e.g., aircraft type, aircraft
ID). The information contained on the flight strips is required for safety analysis.

3.4.1. Green Strip/Electronic File Time Correlation

By default, the green strips are computer generated with GMT (Greenwich Mean Time) or
UCT (Universal Coordinate Time). The local recorded data is adjusted to match the green
strips. A sample green strip is shown is Figure 3-2.

SWA702

TIB73SIA

463

+

422
A1615

SJN

1LAVAN

IFR

ABQ

Figure 3-2. Sample Flight Arrival Green Strip

In this example, the aircraft ID is SWA702, the aircraft type is T/B73S/A, the Beacon ID is
4222 and the arrival time is 16 hours 15 minutes GMT.

11

Table 3-4 shows the correlation between the local time, the PC clock, and GMT. For the
Albuquerque airport, green strips are picked up at 9 PM local time. In order to match this
time with GMT, the PC clock and the Zone4 software is adjusted internally to match the
green strip.

ABQ Mtn. Std. Time (Fw)

G. S. Day 1 1 1 1 1 1

WalIclock 9:00 pm 10:00pm 11:00pm 6:00 pm 7:00 pm 8:00 pm

24hr. clock 21:00 pm 22:00pm 23:00pm 18:00pm 19:00pm 20:00 pm

GMT G.S. 4:00 am 5:00 am 6:00 am 1:00 am 2:00 am 3:00 am

PC clock 00:00 am 1:00am 2:00 am 21:00 pm 22:00 pm 23:00 pm

Offsetadd 4 4 4 4 Mod 24 4 Mod 24 4 Mod 24
4 hours

Final Time 4:00 am 5:00 am 6:00 am 1:00 am 2:00 am 3:00 am

A%Q Daylight Savings Time (Spring)

G. S. Day 1 1 1 1 1 1

Wall clock 9:00 pm 10:00pm 11:00pm 6:00 pm 7:00 pm 8:00 pm

24hr. clock 21:00 pm 22:00pm 23:00pm 18:00pm 19:00pm 20:00 pm

GMTG.S. 3:00 am 4:00 am 5:00 am 00:00 am 1:00 am 2:00 am

PC clock 00:00 am 1:00am 2:00 am 21:00 pm 22:00 pm 23:00 pm

OfTsetadd 3 3 3 3 Mod 24 3 Mod 24 3 Mod 24
3 hours

Final Time 3:00 am 4:00 am 5:00 am 00:00 am 1:00 am 2:00 am

Table 3-4 Green Strip/Electronic File Correlation

The objective in Table 3-4 is to match the green strip time to the final time. Since the
green strip day ends on a different day than GMT, an adjustment is made to the data
before it is saved to disk. For example, if we are in Albuquerque during DST and the wall
clock is 9:00 PM, GMT time will be 6 hours ahead at 3:00 AM. Since 9 PM is the
scheduled pick up time for the green strips, the Zone 4 program will close the current
green strip day and open up the next day. The PC clock is set to 00:00 AM, then an offset
of 3 hours is applied to the data before it is written to disk. The 9:00 PM local flight will

12

be recorded on disk as 3:00 AM GMT. This method will correlate the green strip time
(GMT) with the recorded flight.

3.4.2. Zone 4 Display Screen

The output screen shown in Figure 3-1 was modified to accommodate the disk change
utility. The menu choices are listed as follows:

r - start rain mode
s - stop rain mode
c - change backup disk
d - end change disk
q - quit program

The rain mode operation is useful if there is a rain or snow shower in progress. This will
cause the primary radar to return unwanted noise thus increasing the primary radar file
size. By pressing “r”, start rain mode, the computer will not process primary radar until
the “s”, stop rain mode key is pressed, or by default, an elapsed time of two hours. At the
end of two hours, the primary radar will begin to record.

The option for disk change is letter “c.” This will close the file on the recording cartridge
(typically a B=nodli Lasersafe) and prompt the user to change the cartridge. A
temporary file is created on the alternate backup device while the disk change occurs. The
temporary file is copied back to the new cartridge after it is put in the Lasersafe drive.
The “d” key is pressed after the cartridge is changed. This method prevents data loss
while allowing the user to capture the recorded data.

The configuration options for the backup device and time zone offsets are read at startup
from the configuration file SITE.CFG. It has the following format:

C: \ZONEDATA\ ;backup directory
1 ;backup flag O-disable l-enable
E ;primary backup disk (E is Lasersafe Plus)
c ;alternate backup device (for temp files)
4 ;Albuquerque offset hours DST=3 MST=4

The fwst line C: \ZONEDATA, specifies where the raw data files are stored. The second
line specifies that the data will record to a backup device. A value of 1 enables backup
while a value of Owill record data on the C: drive ody without a duplicate copy. The third
line shows the device name if line 2 is enabled. In this example, the primary cartridge
backup is logical device E:. The fourth line shows where the alternate backup device is as
the disk change occurs. This is the device where temporary files are copied. The last line
show the offset hours from the PC clock. If the PC clock is set to 6 am, the offset is applied
to the recorded time and saved as 10 am if the offset is 4.

13

3.5. Zone 4 Sofiware Diagram

Figure 3-3 shows the logical flow of the Zone 4 software. The process stays in an
continuous loop once the connection is established to the digitizer.

FDial Modem

PSet
Digitizer
Parameters

DDisplay
Local Map

+

Process
Digitizer
Data

9Write out
ASCII data

+ I

Figure 3-3. Zone 4 Software Diagram

3.6. Zone4 Module Description

The following list shows the entire module set for the Zone4 software. Two groups are
listed: the software for the batch file and the software for the zonea executable. A brief
description of each module is listed.

14

3.6.1. ZONE4A.BAT File

CALLRAMS.C - Callrams is a program that uses the Telebit TIOOO modem to dial up the
digitizer. It reads site specific information (e.g., phone number, access password) from the
file PSMAP.CFG. The format of the PSMAP.CFG is listed:

0.00 ;xd=eastiwest coordinate in nautical miles from radar for program arb only
0.00 ;yd=northhouth coordinate in nautical miles born radar
196.8 ;rcell=beacon range cell size in feet
196.8 ;rrcell=primary range cell size in feet
11.52 ;maxrg=coverage radius in statute miles
853.33 ;antrotrate=in azimuth ticks/sec=4096/period
1.0 ;tripradsq=radius of trip wire in miles
XX2GK ;password=password for digitizer
2 ;mode O=primary only, I=beacon only, 2=both
300 ;rgen-=beacon range error in range cells
-1oo ;azerr=beacon azimuth error in azimuth ticks
245 ;rrgerr=primary range error in range cells
-1oo ;razerr=primary azimuth error in azimuth ticks
ATDT2433178 ;modcmd=digitizer telephone number as a command to the modem
10.73 ;pfactor=10.73
cWin@5Heet;9.25@Ofi; 9.52@lM;9.8@2~; lO.l@3W;lO.4W4W
1 ;pressdefault. if 1 accept default pressure of 29.92 else stop and get pres.
367.0 ;maxtvel max threat speed in Wsec. Faster than this is discounted.
59.0 ;mintvel min threat speed in Wsec. Slower than this is discounted.
300.0 ;maxcrosstime in sec. Approach taking longer than this to cross are discounted

SETDIG.C
Setdig is a program used to configure the SRAMS digitizer.
It expects to find a disk file named PSMAP.DIG containing the information
to configure the digitizer. The file should appear as shown below.

2
3
6
1
0
0
0
0
0
1
BF8
F20
130
30C

;mode O=primary only,l=beacon only,2=both
;beacon threshold. must have a value even if beacon not used.
;primary threshold. must have a value even if radar not used.
;pedit option. l=beacon shares edit signal, else O. must have value.
;begin an edit parameter set O for clear 1 for set to 1. or end file.
;AZST IN HEX, top three and bottom three bits=O
;AZSP IN HEX, DITTO
;RGST IN HEX, TOP 4 BITS AND BOTTOM 2 BITS =0
;RGSP IN HEX, DITTO
;NEXT EDIT PARAMETER SET HERE FOR 6 MILE BLOCK
;AZST
;AZSP
;RGST
;RGSP This line and all others must end with a line feed.

15

ZONEA.C
Program to track Beacon and Primary radar flight tracks. The data is saved into
individual files.

SLEEP.C
If an error occurs with ZONEA, the program will put itself in suspend state with the sleep
function. The program sleep will put the computer in a wait state for the specified
number of seconds on the command line. For instance, the command sleep 180 will sleep
for three minutes.

CTLALTDL.C
This program will causes a warm reboot of the computer. It is the equivalent of pressing
the CTL-ALT-DEL keys. This function is used in case of a non-recoverable error.

3.6.2. Zonea Executable File

The following list shows the correlation between the PC filenames and the actual module
names listed in the project file ZONEA.PRJ. There is a total of 24 modules in zonea.

File Name
BTRKZONA.C
BTRMZONE.C
CHGDISK.C
CHKDFREE.C
COMBINZ.C
COPYTMP.C
DELFILES.C
ELEVZ.C
FILECPY.C
GETDRLET.C
INIBOXZ.C
MONTHCVT.C
OPENBFIA.C
OPENRFIA.C
RCOMBINZ.C
RTRKZONA.C
RTRMZONE.C
SITECFG.C
TBLINKZ.C
UNPKBZ.C
UNPKRZ.C
XSTRZ.C
ZONEA.C
ZONESCRN.C

Module Name
rtrack
btrimplt
chgdisk
chkdfree
combine
copytmp
delfiles
initelev
filecpy
getdrlet
inibox
monthcvt
openbfil
openrfil
rcombine
rtrack
rtrimplt
sitecfg
tblink
unpkb
unpkr
xstr
zonea
safescrt

16

A brief description of each module is listed. More detail can be found in reference
[Skogmo]. The modules in bold text are either modified or new additions to the original
RAMS software.

BTRKZONA (module name: btrack) - This function provides tracking for the SRAMS
Beacon radar data. It operates on a list of plane positions derived by the function btrimplt
from Beacon radar data and converted x,y coordinates in feet fi-om the site. The output of
btrack is a list of plane positions at the plotting instant and their velocities.

BTRMZONE.C (module name: btrimplt) - This ilmction accepts an array of range and
azimuth Beacon radar reports and converts the array to Cartesian coordinates in feet from
the position xd, yd. It trims out any points outside of the sector of interest defined by
maxrg.

CHGDISK..C (module name: chgdisk) - This function swaps the primary and alternate
backup devices. It also changes the input filename extension horn .dat to .tmp or .tmp to
.dat. For instance, if the primary disk is E: and the alternate is C:, the function will swap
these values from E: to C:. This fi.mction is required for a disk change.

CHKDFREE.C (module name: chkdfree) - This function will check the available disk
space on the selected drive. A warning beep will sound if the recording disk is more than
80% full.

COMBINZ.C (module name: combine) - This function combines multiple hits that are
from the same plane. If two hits are within +/- 1 of the same range, with a certain span of
azimuth, and don’t have dissimilar id’s, they are combined. This function is used for
Beacon tracks.

COPYTMP.C (module name: copytmp) - This fmction copies the input file to the
alternate backup device defined in SITE.CFG. This is required for a disk change. Calls
routines chgdisk and filecpy.

DELFILES.C (module name: delfiles) - Delete all files in the C: \ZONEDATA directory
that are older than 29 days. This prevents the C: drive horn overloading. Calls routine
monthcvt.

ELEVZ.C (module name: initelev) - This fiction initializes the constant arrays used by
the fimction elevation. The elevation fmction is included in the ELEVZ.C file.

FILECPY.C (module name: filecpy) - This function copies one file to another and
returns the number of bytes copied.

17

GETDRLET.C (modde name: getdrlet) - This function returns the integer value for
the disk device (i.e., A returns O, B returns 1, ...)

INIBOXZ.C (module name: inibox) - This function
group of 4-sided polygons.

checks to see if a point falls within a

MONTHCVT.C (module name monthcvt) - This function returns a two character
month representing the integer for that specific month (i.e., JAN returns 01). Called from
function delfiles.

OPENBFIAC (module name openbfil) - This function creates a descriptor for a plane
based on the date, hour, and minute plus a two digit tag to allow for 100 concurrent
planes. It writes the opening record for the plane into the Beacon file. This routine was
modified to accommodate the offset hours to GMT. The following code segment shows the
algorithm:

temphours = hours + offsethours
hours = temphours mod 24
write outputfile hours

The mod function is used to adjust for times greater than 24 hours (e.g., 24=0, 25=1).

OPENRFULC (module name: openri%l)- This is the same function as openbfil except it
is used to open primary radar files (R files).

RCOMBINZ.C (module name: rcombine) - This function combines multiple hits that are
from the same plane. If two hits are within +/- 1 of the same range, with a certain span of
azimuth, they are combined. This function is used for primary radar tracks.

RTRKZONA.C (module name: rtrack) - This function provides tracking for the SRAMS
primary radar data. It operates on a list of plane positions derived form the primary radar
data and converted x,y coordinates in feet fi-om the site. The output of rtrack is a list of
plane positions at the plotting instant and their velocities.

RTRMZONE.C (module name: rtrimplt) - This function trims out points outside the sector
of interest defined by maxrg. It operates on primary radar data.

SITECFG.C (module name: sitecfg) - This function reads site specific global variables
horn the SITE.CFG file. The backup flag determines if a copy of the data is needed for the
alternate device.

TBLINKZ.C (module name: tblink) - This is a display function. It blinks the recent points
plotted fi-om their plot color to yellow in exclusive or mode. The state of the flash color
(yellow or plot color) is given by the global variable flash, which is toggled by blink each
time.

18

UNPKBZ.C (module name: unpkb) - This fimction moves the Beacon data fi-om the receive
buffer into the range, azimuth, id, and el buffers.

UNPKRZ.C (module name: unpkr) - This function moves the primary radar data fio the
receive buffer into the range and azimuth buffers.

XSTRZ.C (module name: xstr) - This function draws the character string at point x, y in
the passed color in exclusive or mode. This module contains the function xordot.

ZONEA.C (module name: zonea) - Zonea is the main program for data collection. It
writes all processed data into the respective files (Beacon, primary, and unfiltered).

ZONESCRN.C (module name: safescrt) - This function displays the local site map.

In addition to the modules, there are common include files used in the data collection
program.

COMNEWZ.C - This file contains the communications library for SRAMS.

GETCFG.C - Reads site specific itiormation into global variables from the file
PSMAP.CFG

READLIN.C - Reads characters born the passed stream into the passed buffer until the \n
character is encountered. It terminates the buffer with a O.

ZONEDEF.C - This file is the include file for all of the routines. It contains definitions
and function prototypes.

19

Intentionally Left Blank

20

4. Postprocessing Software

4.1. Sanitize Software Description

The SANITIZE program does basic sanity checks on the input radar file. All the records
in the file are 49 bytes long, if not, we print out the record number and the illegal string.
The input radar file can be raw (.DAT) or sorted (.SRT) format.

Column 13 is checked for a valid S, P, or E character. If the character is missing or
invalid, we have bad data - a message and the line number is printed.

Filename: SANITIZE.FOR

Compiler: Fortran Powerstation Ver. l.Oa for DOS

Compile instructions: FL32 SA.NITIZE.FOR

To execute: SANITIZE filename, e.g., SANITIZE B950112.DAT

The structure of the raw Beacon radar file is listed
Each record is fixed length 49 bytes.

940201101000S 101017 +7.37e+03 +5.44e+04 1200 53
940201101001S 101017 +1.42e+04 +1.02e+04 0475 68
940201101002S 101017 +3.16e+04 +1.00e+04 0764-20

The records are structured as follows:
Column (1:2) Year
Column (3:4) Month
Column (5:6) Day
Column (7:8) Start hour of flight
Column (9:10) Start min of flight
Column (11:12) Flight sequence number (00 thru 99)
Column (13:13) (S)tart, (P)rogressive, or (E)nd of flight
Column (15:16) Time 1- hour of flight
Column (17:18) Time 1- min of flight
Column (19:20) Time 1- seconds of flight
Column (22:30) X coordinate - true north
Column (32:40) Y coordinate - true north
Column (42:45) Beacon ID or squawk code
Column (47:49) Elevation * 100

21

4.2. Sanitize Calling Sequence

‘llvo subroutines are used in SANITIZE. A brief description of each subroutine follows:

READ.FILE - open up input file
CHECK_SPE - checks SPE count

The routines are all called from the main program. The calling sequence follows:

Read the input file from the command line
CALL READ.FILE (IFILE)

Do sanity checks
CALL CHECK.SPE (IFILE)

IFILE is a character variable read in horn the command line. If the filename is not
entered the following message will appear on the screen:

*** pLE~E ENTER FILENAME ON COMMAND LINE ***

SYNTA2L SANITIZE [radar_filename]
e.g., SANITIZE B950126.DAT

If the program completes successfully, the program will print out the number of records in
the file. For example:

OUTPUT FROM SANITIZE:
FILE B950112.DAT CONTAINS 11706 RECORDS.

4.3. Sanitize Subroutine Description

SUBROUTINE READ_FILE (IFILE)
CHARACTER*(*) IFILE

Function name: READ_FILE
Purpose: Open up input file and count characters and total records
Parameters: IFILE (input file name - character string)
Sample call: CALL READ_FILE (IFILE)
Calls routine: none
Called from: main program
Return value: none

Messages returned:

22

If the input file cannot be found, the following message will appear on the display:
FILE B950112.DAT NOT FOUND

If a record is not equal to 49 bytes, the next message will appear:
Invalid record # = 1170

SUBROUTINE CHECK.SPE (IFILE)
CHARACTER*(*) IFILE

Function name: CHECK.SPE
Purpose: This routine does some basic sanity checks. First it determines if character
position 13 of the input record has a S, P, or E in that column. At least 1 character (S, P,
or E) must be found in column 13; if not a error message will be displayed on the screen.

The S,P,E characters represent the following:
S - start of flight
P - continuation point of flight
E - end of flight

The routine will check for a valid numeric in column 49 (elevation) This will confirm that
the record is complete.

Parameters: IFILE (input file name - character string)
Sample call: CALL CHECK.SPE (IFILE)
Calls routine: none
Called from: main program
Return value: none

Messages returned:

If an invalid integer is found in column 49, the next error will appear:
Invalid integer in column 49 at line 1250

If an illegal character (other than S, P, or E) then the message will appear:
Illegal character in column 13 at line 1250

If there is not at least one record with an S, P, or E in column 13, then one of the following
messages will appear:

Starting records not found - DATA ERROR
No primary records found - DATA ERROR
No ending records found - DATA ERROR

23

4.4. Sortdata Software Description

Filename: SORTDATA.FOR

This program reads and sorts the Albuquerque and Amarillo aircraft
flight data. The program reads input from the Beacon radar file or
primary radar (.DAT extension) and generates a sorted file
(.SRT extension). It is expected that the SANITIZE program is run
before this program is executed. SORTDATA uses an index array (INDX)
for sorting.

Compiler: Fortran Powerstation Ver. l.Oa for DOS

Compile instructions: FL32 SORTDATA.FOR

To execute: SORTDATA filename, e.g., SORTDATA B950112.DAT

File dependencies: SORTDATA.INC is the required include file

The output file (.SRT extension) is sorted on two keys: the date/time stamp is the primary
key(field 1, characters 1:13) and the secondary key is the start time of the flight (field 2,
characters 15:20). Sample output is listed below:

940201101000S 101017 +7.37e+03 +5.44e+04 1200 53
9402O11O1OOOP 101021 +7.95e+03 +5.52e+04 1200 52
9402O11O1OOOP 101026 +7.80e+03 +5.59e+04 1200 51
9402O11O1OOOP 101031 +7.45e+03 +5.63e+04 1200 51
9402O11O1OOOP 101036 +8.10e+03 +5.76e+04 1200 50
9402O11O1OOOP 101040 +8.35e+03 +5.83e+04 1200 50
9402O11O1OOOP 101045 +8.64e+03 +5.92e+04 1200 50
9402O11O1OOOE 101049 +0.00e+OO +0.00e+OO 0000 0

4.5. Sortdata Calling Sequence

Three subroutines are used in SORTDATA. A brief description of each routine follows:

READ.FILE - open up input file
SORT1 - perform modified shell sort
WRITE.FILE - write out sorted file

All routines are called from the main program. The calling sequence follows:

Read the input file from the command line
CALL READ.FILE

Sort the input file based on the date/time stamp

24

An index array is used for sorting.
CALL SORT1

Write out the sorted file
CALL WRITE.FILE

After the program finishes, the following message will print to the screen.
OUTPUT FROM SORTDATA
A TOTAL OF 11706 RECORDS WRITTEN TO FILE B950112.SRT

All routines use a common include file named SORTDATA.INC. This file contains
variables and arrays common for all routines. A listing follows:

Filename: SORTDATA.INC - include file for SORTDATA.FOR

Global variable definitions:

MXRECS -
LINE -
IFILE -
OFILE -
NRECS -
INDx -

maximum number of records in radar file
array of 49 byte character strings
input file string
output file string (sorted file .srt)
counter for number of records in file
index array (used for sort routines)

PARAMETER (MXRECS=300000)
CHARACTER LINE*49, IFILE*12, 0FILE*12
INTEGER NRECS, INDX
COMMON NRECS, LINE(MXRECS), INDX(MXRECS), IFILE, OFILE

Two arrays are declared with a dimension of 300000. Currently, this value is large
enough to hold all data records in memory for sorting.

4.6. Sortdata Subroutine Description

SUBROUTINE READ.FILE
Function name READ.FILE
Purpose:

This routine reads the filename from the command line and populates the LINE and
INDX global arrays.

Parameters: none
Calls routine: none
Called from: main program
Return value: none
Globals modified: NRECS, LINE, INDX

Messages returned:

25

The input file variable, IFILE, is declared as global and read in from the command line. If
the filename is not entered, then the following message will appear:

*** PLEASE ENTER FILENAME ON COM WD LINE ***

SYNTAX SORTDATA [filename]
e.g., SORTDATA B950112.DAT

If the input file, IFILE, does not exist then the next message will appear:
FILE B950112.DAT NOT FOUND

If the input file exceeds the MXRECS of 300000, then the next message will appear:
*** EXCEEDED 300000 RECORDS ***

SUBROUTINE SORT1
Function name: SORT1
Purpose:

This routine uses a modified shell sort using 2 keys:
the 1st is the date/time stamp (1:12)
the 2nd is the flight time column (15:20)
This routine was obtained born Bob Roginski, 12333

Parameters: none
Sample call: CALL SORT1
Calls routine: none
Called from: main program
Globals modified: INDX
Return value: none

Messages returned: none

SUBROUTINE WRITE_FILE
Function name: WRITE_FILE
Purpose: write out the sorted filename (.SRT extension)
Parameters: none
Sample call: CALL WRITE_FILE
Calls routine: none
Called from: main program
Globals modified: none
Return value: none

Messages returned: none

26

4.7. Sortflt Software Description

Filename: SORTFLT.FOR

This program separates the good flight data born the unresolved flight data. Three output
files are written: a .IDX file for the flight number, start, and end points for the good flight
paths; a .BID file sorted by Beacon ID and a .RPT file for flight summary information.
These files are required if there is a need to plot the flight paths. This program will
process both Beacon and Primary radar files.

The good data has a continuos flight path, this is determined by the 13th column of the
input file. The input file is assumed sorted (,SRT extension)

Compiler: Fortran Powerstation Ver. l.Oa for DOS

Compile instruction: FL32 SORTFLT.FOR

To execute: SORTFLT filename, e.g., SORTFLT B950112.SRT

Output files: Index files are required for viewing aircraft flight paths. The format of the
three output files (.IDX, .BID, and .RPT) is described below.

4.7.1. Flight Index File Description

This file is fixed length 138 byte ASCII records and is created with a .IDX extension (e.g.,
B950112.IDX). It contains summary information for every flight in a given day. Start
time, end time, start and end elevations and Beacon data is kept in the flight index file.
This scheme allows a quick search of the sorted radar file. It also contains the updated
information for the green strips. The index file is sorted by flight number (column 1). The
flight number is a sequential number, starting at 1, which represents the order in which
the flight appeared for a given day. The sequence pattern is 1,2,3,4,; each flight will
be assigned a unique, sequential flight number. A sample index file (sorted by flight
number) is shown in Table 4-1. The data is from Albuquerque on February 2, 1994.

27

11 89402011010001200101017101045 53 500
29 689402011010010475101017101458 681210
3 69 989402011010020764101017101226 51 650
4 99 1309402011010034240101017101235 791110
5 131 1379402011010047262101017101040 2802800
6 138 1639402011010051200101017101208 64 540
7 164 1799402011010060473101017101121 77 600
8 180 1939402011010072667101017101113 1111170
9 194 2059402011010084234101017101103 95 950

10 206 218940201101009 O4611O1O361O1126 20 301
11 219 2529402011010100741101054101322 651340
12 253 2649402011011000510101154101240 2602600
13 265 3149402011013001200101312101653 58 550
14 315 3489402011013013241101335101603 2792600
15 349 3579402011013020510101340101412 2602600
16 358 3929402011013032660101349101621 83 550
17 442 4829402011015004206101507101808 70 562
18 483 5039402011015014206101507101635 120 860
19 504 5239402011015024250101540101703 49 490
20 561 5689402011016001310101635101703 3883910
21 569 5859402011016010461101645101755 50 600

1 3##############################o###
1 1##############################o###
1 l################H####### #####o###
1 1############# ############ #####o###
1 1##############################o###
2 3##############################o###
1 1#############################o###
1 1##############################o###
1 1######################### #####o###
2 2##############################o###
1 1##############################o###
1 2##############################o###
3 3#############################o###
1 1##############################o###
2 2##############################o###
1 1#############################o###
1 2######################### ####o###
2 2####w######################o###
1 1#############w###############o###
1 1##############################o###
2 2##############################o###

Table 4-1. B940201.IDX Flight Index Table

‘l?heindividu alfieldsa redefinedbelow. The first record is usedforreference.

Field 1(1:8) Flight number- thisis theunique sequential number forthegiven
flight. In the file listed above, theflight number for the firstrecordisl.

Field 2(9:15) Start offlight record; this column identifies the specificrecordfor the
start offlight in the corresponding radar file (.SRTfile). Inthefirst
record,flight number listhe first recorded flight on February 1.

Field 3(16:24) End of flight record. The end record in B940201.SRT is 8.

Field 4(26:37) Unique ID for flight (e.g., 940201101000). ‘l%isfieldmatche stheunique
ID in the sorted radar file. The 94 represents the year, 02 the month, 01
the day, 10 the start houroftheflight, 10thestartminute, andOOthe
sequence numberforthe flight. Iftwoor more aircraft are flyingat the
same time, thenthesecond flight will useaOlsuffix, the thirda02
suffix.

Field 5(39:42) Beacon ID or squawk code (e.g., 1200).

Field 6(44:49) Start time of the flight in HHMMSS (UCT or GMT) (e.g., 10:10:17)

Field 7(51:56) End time of flight in HHMMSS (GMT) (e.g., 10:1O:45)

Field 8(58:60) Start elevation of flight (x 100) (e.g., 53”100=5,300 feet)

Field 9(62:64) End elevation of flight (x 100) (e.g., 5O*1OO=5,OOOfeet)

Field 10(66:66)Flight indicator field. The indicatoris defined as follows:

28

O - good flight, no Beacon ID change
1- Beacon ID changed from 1200 to another number
2- Any Beacon Id number changed to any other number
3- BID 1200 changed to another number, then changed again

In the sample flight, the flight indicator is O (no BID change). This information is
important for attaching green strips to electronic data.

Field 11(71:71) Sequence number of Beacon ID (e.g., 1 of 3 total BID 1200 flights).

Field 12(76:76) Total count of Beacon IDs (e.g., 3 total BID 1200 flights).

The next group of columns are updated when the green strip and display program
(PLOTFLT) is run.

Fld. 13(78:78)

Fld. 14(80:91)

Fld. 15(93:104)

Fld. 16(106:106)

Fld. 17(108:111)

Fld. 18(113:113)

Fld. 19(115:117)

Fld. 20(119:138)

VFR/IFR/Unknown indicator. Three choices are allowed in this field:
U - Unknown, I - Instrument, V - Visual

Aircraft ID (e.g., AAR123)

Aircraft type (e.g., B747)

Time prefix; E(fly over), P(departure), or A(arrival)

Time 24 hour format (GMT); (e.g., 1017)

Match indicator field; O-not matched, l-matched. If the green strip
matches the electronic data then set this field to 1, otherwise the default
is O.

Initials of operator entering green strips (e.g., JLT).

Blank spaces (reserved for future use).

4.7.2. Beacon Index File Description

The Beacon index file has the same format as the flight index file (.IDX). The only
difference is the Beacon index file (.BID) is sorted and saved based on the Beacon ID (Field
5, values 0000 through 9999). Because of memory limitations on the PC, it was easier to
process the BID disk file, and plot by Beacon ID, in the PLOTFLT program. The flight
index file could have been used for plotting but this would require a sort inside of the
PLOTFLT program. Hence, plot speed would have decreased and memory requirements
increased. A sample Beacon ID index file fkom February 4 is shown in Table 4-2.

29

10 206 218940201101009046110103610112620 301 2 2##############################0###
21 569 585940201101601046110164510175550 600 2 2##############################O###
7 164 179940201101006047310101710112177 600 1 1##############################O###
29 689402011010010475101017101458681210 1 1##############################0###

12 253 26494020110110005101011541012402602600 1 2##############################O###
15 349 35794020110130205101013401014122602600 2 2##############################0###
11 219 2529402011010100741101054101322651340 1 l####iW########################0###
3 69 98940201101002076410101710122651 650 1 1##############################0###
11 8940201101000120010101710104553 500 1 3##############################0###
6 138 16394020110100512001O1O171O12O864 540 2 3##############+h%##############0###

13 265 314940201101300120010131210165358 550 3 3#$############?################O###
20 561 56894020110160013101016351017033883910 1 1##############################O###
16 358 392940201101303266010134910162183 550 1 1##############################O###
8 180 19394020110100726671010171011131111170 1 1##############################0###

14 315 34894020110130132411013351016032792600 1 1##############################O###
17 442 482940201101500420610150710180870 562 1 2###########+H$#################0###
18 483 5039402011015014206101507101635120 860 2 2##############################0###
9 194 205940201101008423410101710110395 950 1 1##############################O###
4 99 1309402011010034240101017101235791110 1 l#############WM############O###

19 504 523940201101502425010154010170349 490 1 l###########M#################O###
5 131 13794020110100472621010171010402802800 1 1##############################O###

Table4-2. B94020 l.BID Beacon Index File

4.7.3. Sortflt Report File Description

Areport file isgeneratedfkom the SORTFLTprogram. Ithasa.RPT extension.
Pertinent information such as percentage of good flights, duplicate Beacon ID’s, and flight
1200 countare saved. Flight 1200 is usuallyaunknown or default Beacon IDifthe plane
does not have a transponder. In Albuquerque, flight 1200 is also used by small planes and
student pilots. Asample printout isshownbelow (B940201.RPT).

Input file=b940201.srt
Record count= 600
Scount= 25
Pcount= 554
Ecount= 21
Othcnt= O
Totalflight count= 21
Percent good records= 83.17%
Max distance= 5852.35Feet
Maxvelocity= 831.30MPH
Max distance flightnum= 20
Number offlightswhich change Beacon IDsduringflight= 1
**

TOTAL FLIGHT COUNT: 21
Number of flights (unique BID =1): 12
Number of flights (non-uniq. BID >1): 9
Percent offdewith uniqueBeaconIDs :57.14$Z0
Percent offilewith duplicate Beacon lDs: 42.86%
**

TOTAL FLIGHT COUNT = 21
30

Number of flights with flight count= 1: 12
Number of flights with flight count= 2: 6
Number of flights with flight count= 3: 3
Number of flights with flight count= 4: 0
Number of flights with flight count= 5: 0
Number of flights with flight count= 6: 0
Number of flights with flight count= 7: 0
Number of flights with flight count= 8: 0
Number of flights with flight count= 9: 0
Number of flights with flight count= 10: 0
Number of flights with flight count> 10: 0
**

TOTAL COUNT OF 400 AND 1200 FLIGHT NUMBERS AND PERCENT: 7 33.33%
Total count of 400 flight numbers and percent: 4 19.05%
Total count ofunique 400 flights (unique or= l): 2
Total count of duplicate 400 flights (duplicate or >1): 2

Total count of 1200 flights and percent: 3 14.29%
**

TOTAL COUNT OF FLIGHTS W/O 400/1200 AND PERCENT: 14 66.67%
Number offlightswith flight count =1: 10
Number offlights withflight count =2: 4
Number offlightswithflight cowt =3: O
Number of flights with flight count= 4: 0
Number of flights with flight count =5: O
Number of flights with flight count= 6: 0
Number of flights with flight comt=7: O
Number of flights with flight count =8: O
Number of flights with flight co~t=9: O
Number of flights with flight count =lO: O
Number of flights with flight count >lO: O
:e*

Duplicate Beacon IDs
Beacon ID Count

461 2
510 2

1200 3
4206 2

:k*

*** Records andflightnumbers >MACH3 ***
Record Flight number

31

4.8. Sortflt Include File

All subroutines in SORTFLT (except HIGHLOW) use an include file named
SORTFLT.INC. This file defines global parameters, arrays, and record structures. A
listing of the include file follows:

Filename: SORTFLT.INC - include file for SORTFLT.FOR

Global variable definitions:

MXRECS - Max number of records in radar file
MAXFLT - Max number of Beacon flights
MAXBID - Max number of unique Beacon ID’s (0..9999)
LINE - Array of 49 byte character strings
RADAR’IYPE - Flag for (B)eacon or (P)rimary radar
IFILE - Input filename
NRECS - counter for number of records in file
FLIGHT - Array of start/end record structures
FLTCNT - Flight counter (S, P.. P.. P, E sequence)
FLTIDX - Integer array (O-unresolved l-good flight 2-exceeds MACH3)
FLTNUM - Int array which correlates record numbers and flight numbers
TOTFLTCHG - Number of flights which chg Beacon ID within the flight
XVAL - X value array
YVAL - Y value array
BID - Beacon ID array of all records (MXRECS)
BIDARR - Cumulative counter of individual Beacon ID’s
DIST - Distance array (dist between X, Y points)
VEL - Velocity array
MAXVEL - Maximum velocity of VEL array
MAXDIST - Maximum distance of DIST array
SCOUNT - Column 13 S counter
PCOUNT - Column 13 P counter
ECOUNT - Column 13 E counter
OTHCNT - Column 13 other counter
FLIGHT - Record structure of flight number, start and end recs.
MAXDISREC - Record number of max flight distance
MAXDISFLTNUM - Flight number of max flight distance
SWEEPTIME -1 revolution of radar (4.8 sees)
MACH3DIST - Distance (ft.) traveled at math 3 (740mph = math 1)

PARAMETER (SWEEPTIME = 4.8)
PARAMETER (SECPERHR = 3600)
PARAMETER (FTPERMILE = 5280)
PARAMETER (MACH3DIST = 15645.145)
PARAMETER (MXRECS=300000, MAXFLT=20000, MAXBID=9999)

32

CHARACTER LINE*49(MXRECS), RADARTYPE*l, IFILE*12
INTEGER NRECS, FLTCNT, MAXDISREC, MAXDISFLTNUM
INTEGER SCOUNT, PCOUNT, ECOUNT, OTHCNT, TOTFLTCHG
INTEGER*1 FLTIDX(MXRECS)
INTEGER FLTNUM(MXRECS)
INTEGER BIDARR(O:MAXBID)
INTEGER BID(MXRECS)
REAL XVAL(MXRECS), YVAL(MXRECS), DIST(MXRECS), VEL(MXRECS)
REAL MAXVEL, MAXDIST

Record structure
STRUCTURE ADX_FILE/

INTEGER FLTNUM
INTEGER SREC
INTEGER EREC
CHARACTER PRIKEY*12
CHARACTER BEACON*4
CHARACTER STHR*2
CHARACTER STMIN*2
CHARACTER STSEC*2
CHARACTER ENDHR*2
CHARACTER ENDMIN*2
CHARACTER ENDSEC*2
CHARACTER STELEV*3
CHARACTER ENDELEV*3
INTEGER*1 FLTIND
INTEGER BIDSEQ
INTEGER BIDCNT

END STRUCTURE

! Flight number (sequential)
! Start of flight record number
! End of flight record number
! Primary key LINE(1:12)
! Beacon ID
! Start hour
! Start minute
! Start second
! End hour
! End minute
! End second
! Start elevation
! End elevation
! Flight indicator field
! Beacon ID sequence
! Beacon ID count

Declare an array of flight structures
RECORD /IDX_FILE/ FLIGHT(MAXFLT)

Common
COMMON /ZONE4/ NRECS, FLTCNT, SCOUNT, PCOUNT, ECOUNT, OTHCNT,

* TOTFLTCHG
COMMON FLTIDX, FLTNUM, LINE, RADARTYPE, IFILE, XVAL, YVAL, 191ST,

* VEL, MAXVEL, MAXDIST, FLIGHT, MAXDISREC,
* MAXDISFLTMJM, BIDARR, BID

33

—

4.9. Sortflt Calling Sequence

Seven subroutines are called in SORTFLT. A brief description of each routine follows:

READ_FILE - Read input file from command line; populate global arrays
SPE.COUNT - Sum all S, P ,E characters in column 13
SORT_FLIGHT - Separated good data from incomplete data
DIST_VEL - Calculate max distance and max velocity between data points
WRITE_FLTNDX - Write flight index file (.IDX)
GEN_REPORT - Generate report file (.RPT)
SORT2 - Sort and generate Beacon ID index file (.BID)

All routines are called from the main program. The calling sequence follows:

Read input file
CALL READ.FILE

Do sanity checks
CALL COUNT_SPE

Separate the good flights from the unresolved flights
CALL SORT_FLIGHT

Calculate distance and velocity between points
CALL DIST_VEL

Write out start and end pts. of complete flights (.IDX)
CALL WRITE.FLTNDX

Generate report file (.RPT)
CALL GEN_REPORT

Sort data based on Beacon ID and write .BID file
CALL SORT2

Upon completion of the program, the following confirmation message will appear:
OUTPUT FROM SORTFLT:
WRITING FLIGHT INDEX FILE: B940201.IDX
WRITING REPORT FILE: B940201.RPT
WRITING INDEX FILE: B940201.BID

34

4.10. Sortflt Subroutine Description

SUBROUTINE READ_FILE
Function name: READ.FILE
Purpose:

This routine reads the input file from the command line
and populates the global arrays.

Parameters: none
Sample call: CALL RE~_FILE
Calls routine: none
Called from: main program
Return value: none
Globals modified: RADARTYPE, IFILE, LINE, XV&L, YVAL, BID

FLTIDX, FLTNUM, DIST, VEL, NRECS, BIDARR

Messages returned:

If the input file, IFILE, is not present on the command line, then the following message
will appear:

*** PLEASE ENTER FILENAME ON co~ LINE ***

SYNTAX SORTFLT [filename]
e.g., SORTFLT B950112.SRT

The first character in the input file must be an ‘R, ‘r’, ‘B’, or %’. If not, the next :message
will appear:

First character in B940201.SRT must be B or R

If the input file does not exist, or if an invalid name is entered, then the next message will
appe=.

File B940201.SRT not found

If the read statement find invalid values for XVAL or YVAL, the next message will
appear:

Invalid record found -> record # 1016

35

—

sumourm COW_SPE
Function name: COUNT.SPE
Purpose: Counts the S, P, and E characters in column 13
Parameters: none
Sample call: CALL COUNT_SPE
Calls routine: none
Called from: main program
Return value: none

Globals modified: SCOUNT, PCOUNT, ECOUNT, OTHCNT

S - start of flight
P - continuation point of flight
E - end of flight

If an illegal character or missing character is found in column 13, then the following
message will appear:

Bogus data found at line 1227

SUBROUTINE SORT_FLIGHT
Function name: SORT.FLIGHT
Purpose:

This routine checks for the sequence of S, P..P. .P, E for
a complete flight. The flight counter FLTCNT is incremented
if we complete a sequence.

Parameters: none
Sample call: CALL SORT.FLIGHT
Calls routine: none
Called from: main program
Return value: none
Globals modified: FLIGHT, FLTIDX, FLTNUM, BIDARR

.

Messages returned: none

36

SUBROUTINE DIST_VEL
Function name: DIST_VEL
Purpose:

This routine calculates the maximum distance and the maximum
velocity between points.

Parameters: none
Sample call: CALL DIST_VEL
Calls routine: none
Called from: main program
Return value: none
Globals modified: IW3XDIST, MAXDISTREC, MAXVEL

SUBROUTINE WRITE_FLTNDX
Function name: VVRITE.FLTNDX
Purpose:

This routine writes out the flight number, start, and end
records for the valid flights. The output index file is
created with a .IDX extension

Parameters: none
Sample call: CALL WRITE_FLTNDX
Calls routine: none
Called from: main program
Return value: none
Globals modified: MAXDISFLTNUM

Messages returned:

OUTPUT FROM SORTFLT:
WRITING FLIGHT INDEX FILE: B940201.IDX

37

.

SUBROUTINE GEN_REPORT
Function name: GEN.REPORT
Purpose:

This routine writes out important parameters including:
record count, S, P, and E count and the flight count
The output file is created with a .RPT extension.

Parameters: none
Sample call: CALL GEN_REPORT
Calls routine: none
Called from: main program
Return value: none
Globals modified: none

Messages returned:

WRITING REPORT FILE: B940201.RPT

SUBROUTINE SORT2
Function name: SORT2
Purpose:

This routine does a modified shell sort using 3 keys:
The primary key is the Beacon ID (42:45)
the 2nd is the date/time stamp (1:12) and
the 3rd is the flight time column (15:20)
A index array (INDX) is used for sorting.
Once sorted, the output file is written with a .BID extension
The sorting algorithm was obtained from Bob Roginski, 12333

Parameters: none
Sample call: CALL SORT2
Calls routine: none
Called from: main program
Return value: none
Globals modified: none

This routine uses the flight index file for sorting (.IDX) and writes out a new Beacon index
file (.BID). If the .IDX is deleted or missing, then the following message will aPPear:

File B940201.IDX not found

After the sort is finished, the following message will appear:

WRITING INDEX FILE: B940201.BID

38

SUBROUTINE HIGHLOW (ARRAY, START, END, HIGH, LOW, AVG)
Function name: HIGHLOW
Purpose:

This routine does basic statistics given an real array.
The routine calculates the high, low and average values
of a given range in a array. This routine was obtained
from the Numerical Recipes book.

Parameters: ARRAY - real array
START - start point in array
END - end point of array
HIGH - highest value (returned)
LOW - lowest value (returned)
AVG - average value of range (returned).

Sample call:
CALL HIGHLOW (DIST, SREC, EREC, MAX, MIN, AVG)

Calls routine: none
Called from: WIUTE.FLTNDX
Return value: none
Globals modified: none

Messages returned:

If the starting record in the array is O, the following message will be displayed:
Start value = O in HIGHLOW routine

39

Intentionally Left Blank

5. Aircraft Viewing Software

5.1. Plotflt Software Description

Filename: PLOTFLT.C

Function:
Plotflt is a DOS based plot program that allows analysts to replay recorded air traffic.
This program permits replay of daily flights sequentially, by range, or by Beacon ID.

The plotflt program also allows users to attach green strips (from the local air traffic
center) to the recorded electronic flight data.

Compile instructions: comp.bat (uses Turbo C++ 3.0 compiler)
Manual compile: tcc -ml plotflt.c graphics.lib

note: the tc \bin directory must be in the path

File dependencies: The PLOTFLT.H include file is required.

Command line execution instructions: plotflt filename (e.g. plotflt B940429.SRT)

Background
This program was adapted from the RAMS program chektrak which was written by David
Skogmo, 12/5/93.

Required input files:
PSMAP.CFG - Contains maximum radius for display
PSMAP.MAP - Graphics file for local airport and streets
PSMAP.TXT - Text file for labels
EGAVGA.BGI - Borland graphics driver
ABQP’17LCFG - Configuration file for data input mode
BYYMMDD.SRT - Sorted radar file
BYYMMDD.IDX - Flight index file
BYYMMDD.BID - Beacon index file

41

.

5.2. Main Program Description

The plotflt program consists of one main program and forty finctions. The main pm~arn
reads parameters (e.g. map coordinates) from cordlguration files and opens the radar files
for viewing. The main program controls selection of both display and data input modes.
Figure 5-1 shows the process.

Read configuration
files, read sorted

radar file

v
Select option:

Plot review
Plot composite

Data entry

+

Populate Beacon
array

Q ‘*
If plot review, If composite mode,

L

If data input,

open index files open display open index files

display plot plot all data points enter green strips

I Finish I

Figure 5-1. Main Program Diagram

42

5.3. Main Program Calling Sequence

The main program controls calling sequence for entire program. First, the abqptxcfg
function is called to set up site specific parameters for Albuquerque and Amarillo. Next
the open_radar_file is called; a valid .SRT file is expected. Select_mode is called next: the
user selects plot display, plot composite, or data input mode. If plot display or clata input
mode are selected, then the user can change default plot options (i.e., plot speed.). Next,
the bid array, G_bid, is populated with Beacon ID integers from the Beacon ID file. This
array is used to check if valid Beacon ID’s are entered during plotting or data entry. A
check is made to make sure we don’t exceed the maximum number of flights per file. A
limit was set because of memory concerns in DOS. Finally, depending on the mode
selected, main will branch to display_plot, safescrt, or the input_data function. A diagram
showing the calling sequence and pseudo code follows.

abqptxcf~); ! Get Albuquerque and Amarillo data input parameters

open_radar_fileo; ! Open sorted radar file

select_modeo; ! Review, composite, or data input mode

If mode= review or data input then
select_plot_opto; ! Select plot options

end if

pop_bid_arro; ! Populate the bid array and calculate filesize

If mode= review then
open_idx_files(’’rb”); ! Open index files read only
display_ploto;

else if mode = com~osite then
safescrto; ! Display screen
trkploto; ! Plot all flight paths
closegrapho; ! Close graphics screen

else if mode= data irmut then
open_idx_files(’’r+b”); ! Open files for update
input_datao; ! Input green strip parameters

end if

end of main

Messages Returned:
If the maximum number of flights for a given day is exceeded, the following message will
appear on the screen:

Max flights 2005 is greater than 2000.
Contact system personnel.

43

The maximum number of flights is currently set to 2000. This value is named MAX.I?LT
and is defined in the include file PLOTFLT.H. This value has never been exceeded after
processing two years of data at the Albuquerque airport.

5.4. Plot Display Mode

5.4.1. Overview

Plot display mode permits a user to view aircraft trajectories for a given day. The flights
can be viewed sequentially (as they occurred during the day) or by Beacon ID. The flights
are plotted on a VGA compatible screen as a series of dots. me plot speed is controlled by
the user upon startup. Multiple flights can be displayed on the same screen. An sample
plot is shown in Fi~-re 5-2.

..- ...
,,J

B940201 .SRT ...4.,.

....

‘ENTER ‘ FOR NEXT .
“a “ TO QUIT.

I

. ..-..=

Flight #: 14
940201 10:16:03
BE13CON DflTfi 3241/260

PIANE OETECT ED
940201 10:13: 3s

. ..., .3

COUEFWIGE LOST
.; /’

94020i 10:16:21 .? j
J.,’ :-

;, :-

Figure 5-2. Sample Plot Using Display Mode.

This is a fly-over flight in Albuquerque on February lst, 1994. The flight direction is from
east to west. In Figure 5-2, the text in the left column represents the following
information: B940201.SRT is the name of the radar file; ‘Enter’ for next will allow the
user to view the next sequential flight in the file; ‘q’ will exit display mode; Flight #: 14
shows that this flight was the 14th flight of February lst; 94020110:16:03 represents the
YYMMDD and the HH:MM:SS of the last plotted point of the flight; BEACON DATA
3241/260, 3241 is the squawk code or Beacon ID of the transponder and 260 is the

44

elevation times 100 (e.g. 26000 feet) of the latest plotted point; PLANE DETECTED
94020110:13:35 is the YYMMDD and HH:MM:SS of the start of the flight; COVERAGE
LOST 94020110:16:21 is the YYMMDD and HH:MM:SS of the last point in the flight
data. The trkplot fimction is used to plot the data points and the background display.

5.4.2. Plot Display Process

Figure 5-3 shows process flow and pseudo code for plot display mode. The function names
are listed in ().

4 start of
program
(main)

Select display
mode
(display_plot)

options
(select_plot) HIDselectedH:::~e-s

b&-ll==-l F=--l
background H configuration H parameters
(sdescrt) (getcfg) (readlin)

Plot a
trajectory

Draw character Plot a dot

(trkplot)
‘ string (xstrz) ‘ (xordot)

, I

I
J I I 1

I

Figure 5-3. Display Mode Process Diagram

In Figure 5-3, the display_plot function is called from the main program. The select_plot
function is called next. This option determines whether the user will select the flight
based on Beacon ID, by a specific flight number, or sequentially. If the mode selected is
Beacon ID, the BID array is searched for the entered BID. If a match is found, an offset is
calculated for the radar file and the corresponding record is read from the radar :file
(.SRT). A pointer is positioned at the specific flight number and the points are plotted on

45

the screen. All Beacon numbers are plotted for the given flight. For example, if the user
enters BID 4333, and if four flights are tagged with Beacon 4333 in the data file, then all
four trajectories will plot on the screen sequentially. If the Beacon number is not found,
the user is given another opportunity to enter a valid integer or quit.

If the mode selected is flight number or sequential, then the index file is positioned at the
proper flight number. The record number, start, and end points of the flight is contained
in the first three fields of the flight index file (.IDX). These fields are used as an index
into the sorted radar file. The flight is plotted from the radar file beginning at the start
point.

5.5. Data Input Mode

5.5.1. (lverview

Data input mode permits users to attach air traffic control strips (see Figure 3-2) to
electronic radar data. The green strips contain information (e.g., aircraft type and id) that
is not captured or not available in electronic form. The aircraft type and related
information is required for the current models used in aircraft crash analysis. Further
information is contained in [Ref. 21.

Figure 5-4 shows the data input process. The functions are listed with (). The functions
get.ti.ifr and get.acft.id are bypassed if the switches are turned off in the ABQPTX.CFG
file. This file is read upon startup; it is used to configure the data input environment. It
was determined that the W?WIFR and aircraft ID were not as important as the other
variables listed on the green strips.

The process begins by asking the user a series of questions related to the flight strip. The
time of flight, Beacon ID, and aircraft type are all captured. The entered Beacon ID is
checked against the BID array to see if there is a match. If a match is not found, the
entered data is saved to an unresolved file. If a match is found, all of the BIDS are plotted
on the screen. At this point, the user is prompted to select which flight matches closely to
the electronic data. At this time, this process is a visual comparison. If a selection is
made, then the BID index file is updated with the green strip information. If the user
chooses not to attach the flight strip to the data, the data is saved to an unresolved file.

46

5.5.2. Data Input Process

+

Enter data fields:
BID, time, type
(input_data)
(setupgs)
(get_vii_ifi)
(get_int)
(get_acfi_id)
(get_acft_type)
(get_hhmm)

1
BID found? No Is BID and data No
(read_bid_file) ‘ correct?
(table_search) (display_indata)

Yes

k ,

I

i

Write data to
unresolved file
(write_unr_data) F

IIs data different? INo
k green strip
already Yes

Compare data w/

entered?
, existing green b
strip data, print

No I
msg. (upd_bid_file)

lYes

IDisplay all BID
w/trajectories,
elev., time,

b
flight numbers
(plotbids)

1
Update BID file
(w_~ITE)

+

Want to attach Write g.s. data to
green strip to No , unresolved file
flight numbers? (write_un_data)

I
Yes 1

Print msg., enter flight Enter flight Write green strip
numbers to match with ~numbers, QA chk , , info to BID file
green strip data (cM_plt_num) (RAN_WRITE)
(get_flt_num)

Figure 5-4. Data Input Process Diagram

47

5.6. Plotflt Include File

The plotflt program uses one include file named plotflt.h. This file contains the global
variables, definitions, and function prototypes for the plotflt program. A listing follows:

/* plotflt.h - include file for plotflt.c */

/* include files */
#include edos.h>
#include egraphics.h>
#include cmath.h>
#include <stdio.h>
#include <bios.h>
#include <time.h>
#include <stdlib.h>
#include <io.h>
#include <string.h>
#include <conio.h>
#include <dir.h>
#include <ctype.h>
#include cmalloc.h>
#include <sys \stat.h>

/* feet per mile*/
/* color for map background */
/* color for beacon track*/
/* color for radar track*/
/* xor mode color to yield btc over bkgd. color */
/* xor mode color to yield rtc over bkgd. color */
/* max number of recorded flights per day*/

/* defines */
#define fpm 5280.
#define bkgd BLACK
#define btc YELLOW
#define rtc WHITE
#define btx btc’bkgd
#define rtx rtc’bkgd
#define MAXFLT 2000
#define TRUE 1
#define FALSE O
#define ON 1
#define OFF O
#define IDXBYTES 140L /* length of ,IDX file in bytes */
#define BIDBYI’ES 140L /* length of .BID file in bytes */
#define RADBYTES 51L /* length of raw radar file in bytes */
#define MAXBYTES 256
#define STARS “****xxx**xw
#define BELL 7
#define EMPTY.STRING ““
#define MAXPLTNUM 100 /* max number of plots viewed on screen */
#define MAXENTRIES 30 /* max number of attached flight numbers */
#define BLANK’ ‘
#define PTX_RADAR_ELEV 3500L /* Amarillo radar elevation in feet */
#define ABQ,_RADAR_ELEV 5000L /* Albuquerque radar elevation in feet */

48

/* plot speed codes in milliseconds */
#define DEIAY_FAST OL
#define DELAY_MED 50L
#define I)ELAY_SLOW 100L
#define SLEEP_FAST OL
#define SLEEP_MED lL
#define SLEEP_SLOW 2L

/* return error codes */
#define ZERO_LENGTH_STR -1
#define NO_ERROR O
#define NO_RADAR_FILE 1
#define BID_NAME_ERROR 2
#define SCANFERR 3

5.7. Plotflt Function Descriptions

The plotflt program contains forty functions. They can be logically grouped into five
categories. These are:

MAIN - functions called exclusively from the main program
PLOT DISPI.AY - display mode only fimctions
DATA INPUT - data input fi.mctions
PLOT DISPLAY and DATA INPUT - functions contained in both plot and data input
GENERAL PURPOSE - finctions that can be used in other programs

The functions are categorized below. The fi.mctions prototypes and a brief description of
each routine is listed.

Main functions
void abqptxcfg(void); /* Read Albuquerque, Amarillo config file */

/* Open radar file*/int open_radar_file(int numargs);
/* Open idx file *Ivoid open_idx_files(char finodea);

long pop_bid_arr(void); /* Populate the Beacon ID array */
/* Select plot mode*/int select_mode(void);
/* Select plot options */void select_plot_opt(void);

Plot d.klav functions
void display_plot(void); /* Main function for plot display mode */

/* Select plot options */int select_plot(void);

49

Data input functions
void input_data(void); /* Main function for data input mode*/

/* Check for valid plot number*/
int chk_plt_num(int pltseqtl, int intbufU, int recarru, int bidrecsave);
int display_indata(void); /* Display input data*/

/* Get aircraft id */void get_acft_id(void);
void get_acfi_type(void); /* Get aircraft type */

void get_hhmm(void); /* Get time*/
int get_vfr_ifNvoid); /* Get ti or ifr response */

/* Get flight number*/int get_flt_num(int bidrec);
void plotbids(int bidrec); /* Plot by Beacon ID*/
void read_bid_file(long bidloc); /* Read Beacon file*/

/* Read input file*/int readinpfile(void);
int setupgs(void); /* Setup green strip entry “/
int upd_bid_file(int recarr[l, int scanfcnt); /* Update BID file */
void write_unr_data(void); /* Write data to unresolved file */

Plot disdav and data inwt functions
/* Adjust slant range of Abq data */

void abqadjust(double xf, double yf, double *newxf, double *newyf, long elev);
void getcfg(void); /* Read global params from psmap.cfg */

/* Adjust slant range of Pantex data */
void ptxadjust(double xf, double yf, double *newxf, double *newyf, long elev);
void safescrt(void); /* Prepare screen and get run parameters*/
void trkplot (int fltnum); /* Plot a radar track*/
void xstrz (char *strg, int x, int y, int color); /* Low level plot routine */
void xordot (int xx, int xy, int XCO1); /* Low level plot routine*/

General Rmmose functions
I* Update a string */

int STRUPD(char sourcell, char replacen, int start);
/* Direct access read*/

int RAN_READ(FILE *stream, long recnurn, long bytes, char stringll);
/* Direct access write*/

int M_WRITE(FILE *stream, long recnum, long bytes, char stringo);
int readlin (char bufll, FILE *strm); /* Read a line into a buffer*/
long filesize (FILE *stream); /* Get file size in bytes */
int table_search(int an, int n, int target); /* Search BID array*/
int get_int(char *prompt, int rein, int max); /* Get integer */
int get_reply(char *prompt); /* General purpose reply function*/

/* Extract middle of string */
int mid_extract(char *src, char *dest, int start, int num_chars);
int ch=_count(char *string, char letter); /* Character counter*/

/* Squeeze c from strings */void squeeze(char sD, int c);

50

5.7.1. Main Function Headers

/*FF****~******* ***** ****** ******************#***************************

Function name: abqptxcfg

Purpose:
Get the Albuquerque and Amarillo site configuration. This routine opens up the
ABQPTX.CFG file and checks if the global flags for VFIVIFR and ACFT ID are set -if set
to 1 the question(s) the user is prompted for a response if set to O, the questions are
bypassed.

The global variables G_vfrifr, G_acid, and G_miles are set in this routine. G_miles is
integer which is used to eliminate flights outside this radius. This assumes that this
option is enabled in SORTFLT.FOR.

Called from: main

Calls routines: None

Sample call: abqptxcfgo;

Return value: None

Messages returned:
If the ABQPTX.CFG cannot be opened, the following message will appear:

Cannot open ABQPTX.CFG file.

***** ***** ***** ***** ***** ***/

/*IF*********** ***** ***** **

Function name: open_radar_file

Purpose:

an

Make sure we have a valid Beacon input file. The file name must start with a “b” or a “B”
and the file extension should be .SRT

Called from: main

Calls routines: None

Sample call: rtnerr = open_radar_file(numargs);

Return value: integer representing one of the following conditions:
NO_RADAR_FILE -> no radar file present or invalid extension
BID_NAME_ERROR -> file cannot be opened; 1st character must be B
NO_ERROR -> successful open

51

Messages returned:
If an invalid extension is used for a filename (other than .SRT) the
following message will appear:

Please use .SRT extension for filename.
Enter name of the radar file for plotting (e.g., B940508N.SRT):

If the input file name does not exist or cannot be opened, the next
message will appear on the screen:

FILE NAME = B940521.SRT
CANNOT OPEN FILE.

If the first character in the filename is not a b or a B, then next
message will appear:

File name W940521.SRT must be a Beacon file.
The first character in the filename must be b or B.

***** ***** ***** ***** ***** ***/

/*IF*********** ***********************************~*************~****e*~*
Function name: open_idx_files

Purpose:
Openthe .IDXand.BID files. The filenames preconstructed fiomthe G_trkname
filename.

Called from: main

Calls routines: None

Sample call: open_idx_files(’’rb”);

Return value: None

Messages returned:
If an error occurs opening the flight index file, the following
message will appear:

Inside open_idx_files module.
Error opening flight index file: B950521.IDX

If an error occurs opening the BID file, the following message will
appear:

Inside open_idx_files module.
Error opening BID index file: B950521.BID

***** ***** ***** ***** ***** ***/

52

/*FF*~***~*************%************************************~******~***#*

Function name: pop.bid_arr

Purpose:
Populates the global Beacon ID array, G_bid. The .BID file is read sequentially and the
5th field is saved intothe array. The .BIDfile is assumed sorted. ‘l?hisfinmti onalso
calculatesthebyte countofthe.BID file

Calledfiom:main

Calls routines: filesize

Definitions: MAXBYTES

Sample call: bytecnt = pop.bid.arro;

Return value: Long value which is the byte count of the BID file.

Messages returned:
Inside pop.bid.arr module.
Error opening sorted index file: B950521.BID

***** ***** ***** ***** ***** ***/

/*FF***************************$***************************************$*

Function name: select_mode

Purpose:
Selectplotreview, composite, ordata inputmode.

Calledfiom:main

Calls routines: None

Sample call: choice = select_modeo;

Return value: Integer value representing the following values:
O -> Quit program
1-> Plot Review mode
2-> Plot Composite mode
3-> Data Input mode

Messages returned: None

***** ***** ***** ***** ***** ***/

53

/*F~**************~****#*#********%*********************************#****

Function name: select_plot_opt

Purpose:
Routine which allows userto change plot parameters and setup plot defaults fortext,
streets, and radii. Iferase modeis turned on, theplot will erase thepretious flight before
itplotsthenext one. If erase mode is off, all flights will plot on the screen one at time.

Called from: main

Calls routines: None

Sample call: select_plot_opto;

Return value: None

Messages returned: None

***** ***** ***** ***** ***** ***/

5.7.2. Plot Display Function Headers

/*FF**********************$**

Function name: display_plot

Purpose:
Allow the usertoselect aflight number(s) or BID to plot; select_pl~t iscalledfirst. Ifa
flight number is input, the start point of the flight is computed for the index file (.IDX).
Thestati point isusedto fseekinto theindex file atthecomect position. Theindex file is
read and the record number for the specific flight (flight number, start and end pts.) are
read into memory. These values are used to locate the proper flight to plot from the radar
file. If a BID plot is chosen, then table_search is called to make s~e the BID n~ber iS
found. If found, then the start point is computed and the BID file (.BID) is used to locate
the flight. A replay option is available after the points are plotted. The trkplot function is
called to plot the points.

Called from: main

Calls routines:
select_plot trkplot
table_search safescrt

Sample call: display_ploto;

Return value: None

54

Messages returned: None

**/

/#FF************************************#*****************~********~****%

Function name: select_plot

Purpose:
Selecttheflight numbers orBeacon ID forplotting.

Called fi-om: display_plot

Calls routines: None

Sample call: choice = select_ploto;

Return value: Integer value representing the following:
O->Quitprogram
1-> Plot all flights sequentially
2-> Plot a specific flight
3-> Plotarange offlights
4-> Plot by Beacon ID

Messages returned: None

**/

5.7.3. Data Input Function Headers

/*FF**e*******e~********e

Function name: input_data

Purpose:
This is the main routine for green strip input. The 1st routine called is setupgs which
captures theinitials of the user. Awelcome messageisprinted andthe following routines
arecalledin sequence:

get_v&_ifl - determine VFR or IFR flight
get_int -getBeaconID

Acheckis madetosee iftheflight iswithin theradius specifiedin theabqptx.cfg. This
global variable is named G_miles. Flights outside this range are ignored. Thisvalueis
currently set to O, which means noflights are ignored.

55

Next the aircraft id, aircraft type, and the time is captured from the green strip. These
routines are named:

get_acft_id - get aircraft id
get_acfi_type - get aircraft type
get_hhmm - get hours and minutes of flight

The table_search function is called next. If the Beacon number is found a plot is initiated
(plotbids). If not found, the user has the option of changing the green strip information or
saving the information to the unresolved file. In this case, the unresolved path is set to 1.

Batch mode is available but should not be used because it has been superseded with a
electronic regional strip match utility. This new program negates the use of batch mode.

Called from: main

Calls routines:
setupgs
readinpfile
get_vfr_iti
read_bid_file
mid_extract
get_acft_id
get_hhmm
write_u~_data

readlin
table_search
get_int
RAN_READ
get_flt_num
get_acft_type
plotbids
display_indata

Sample call: input_datao;

Return value: None

Messages returned:
If the Beacon ID is not found in the file, the following message
will appear:

BEACON ID 3271 NOT FOUND. Press return:

If the maximum number of flights that can be displayed on the
screen is exceeded, the following message will appear:

A total of 120 BIDs found. This exceeds the maximum
number of flights for plotting. No more than 100
flights can be viewed at one time.

***** ***** ***** ***** ***** ***/

56

/*FF****e~~***********************~**************************************

Function name: chk_plt_num

Purpose:
This routine checks forvalidflight numbers. Positive numbers are allowed. Plot number
Oisillegal. The entries mustmatchthe displayed flight numbers. Thenumber ofentries
is returned.

Called from: get_flt_num

Calls routines: char_count

Sample call: scanfcnt = chk_plt_num(pltseq, intbuf, recarr, bidrecsave);
Return value: Integer value which is number of entries read.

Messages returned:
If the number of entries is not between 1 and 30, the next
message will appear:

You must enter between 1 and 30 digits.

If an invalid digit is typed in, the following message will appear:
Error reading input: enter digits only.

If the number of entries exceed the BID count, the next message
will appear:

You entered more plot numbers than expected. Try again.

If negative numbers are entered, the following message will appear:
Enter positive numbers only. Please try again.

If plot number Ois entered, the next message will appear:
You cannot enter plot number O. Try again.

If the entered number does not match the flight numbers, the
next message will appear:

Your selection(s) do not match the plot numbers. Try again.

***** ***** ***** ***** ***** ***/

/*FF*****~***** ***#* ****** ***** ***** ***** ***** #**** ***e+ ***** *~e***~*****

Function name: display_indata

Purpose:
Prints a confirmation screen after green strip information is entered; allows user to
change all the data or none.

57

Called from: input_data

Calls routines: getreply

Sample call: rtnval = display_indatao;

Return value: Integer value
O -> No
1-> Yes

Messages returned: None

**/

/*FF********~*****~***********~*********************%****************~***

Function name: get_acft_id

Purpose:
Prompt for the aircraft ID (e.g., N321FM). This prompt can be bypassed by setting the
aircraft idvariableto Oin the ABQPTX.CFGfile. Enter 12 characters max.imum.

Called from: input_data

Calls routines: None

Sample call: get_acft_ido;

Return value: None

Messages returned:
If the aircraft ID is left blank, the following message will appear:

Youmust enter theaircraft ID. Please re-enter.

If the length of the aircraft ID exceeds 12 characters, the following
message will appear:

You have exceeded 12 characters. Please re-enter.

**J

/*FF***+*************+*

Function name: get.acfi.type

Purpose:
Gettheaircrafttype(e.g.TlB73S/A). Enter 12 characters max.

Called from: input_data

58

Calls routines: None

Sample call: get_acft_typeo;

Return value: None

Messages returned:
If the aircraft type is left blank, the following message will appear:

You must enter the aircraft type. Please re-enter.

If the length of the aircraft type exceeds 12 characters, the following
message will appear:

You have exceeded 12 characters. Please re-enter.

***** ***** ***** ***** ***** ***/

/*FF***~**e**~***~*e******~***~

Function name: get_hhmm

Purpose:
Get the hours and minutes horn the green strip. Time must be in HHMM format. A
minimum of four digits are required. If a leading prefix is used it must be “A” for arrival;
“P” for dep~~e; or “E” for flyover. HH must be in the range 00->23; MM must be in the

range 00->59.

Called from: input_data

Calls routines: None

Sample call: get_ti,mo;

Return value: None

Messages returned:
If the flight time is left blank, the following message will appear:

You must enter the aircraft flight time. Please re-enter.

If the time is less than 4 digits, the following message will appear:
Time too short; Use 4 digits minimum. Please re-enter.

If more than 5 digits are entered, the next message will appear:
Time too long; Use 5 characters max. Please re-enter.

If an invalid prefix is entered, the next message will appear:
Prefix must be A, E, or P. Please reenter.

59

If a negative number is entered, the next message will appear:
Please use valid positive digits for time. Please re-enter.

If the hour is not between 00 and 23, the next message will appear:
Hour is invalid: Use 00 to 23 for hour.

If the minute is not between 00 and 59, the next message will appear:
Minute is invalid: Use 00 to 59 for minute.

***** ***** ***** ***** ***** ***/

/*FF*****~~~~**~***

Function name: get.vfr.ifi

Purpose:
Determineifthis isaVFR,IF’R,or unknown flight strip.

Called from: input_data

Calls routines: None

Sample call: rtnval = get_ti_ifro;

Return value: Integer value O, 1,2, or 3
0-> Quit data entry
1-> IFR
2-> VFR
3-> UNKNOWN

Messages returned: None

**/

/*FF*********************************~***********************************

Function name: get_flt_num

Purpose:
Theisatextmodeversion ofplotbids without thegraphics. The userisgiven options for
attaching the green strips to the electronic flight data. The options are:

1.

2.

3.

Quit
Attach green strip to flight numbers - the flight
numbers are checkandthe Beaconfileis updated
chkplt.nurn andupd_bid_file areca.lled
Write green strip info to unresolved file

60

the unresolved file is updated with path=2
write_unr_data is called

4. Replay the plot

Like the plotbids function, if the BID changes during flight or if the flight is already
attached the flight will display in yellow.

Called from: input_data

Calls routines:
RAN_READ mid_extract
chkplt.nurn upd_bid_file
write_unr_data

Sample call: rtnval = get_flt_num(found);

Return value: Integer
0-> Quit, restart green strip input
1-> Attach green strips to plot numbers
2-> Write green strip information to unresolved file
3-> Replay plot

Messages returned: None

***** ***** ***** ***** ***** ***/

/*FF**+**************

Function name: plotbids

Purpose:
Plot aflight trackfrom the Beacon radarfile. Thisroutine Calls routinessafescrt which
toggles the text screento graphics mode and sets up the screen colors. The scale factorfor
the plotis calculated fiomthe globalvariable
G_maxrg. Thisvariable issitespecific.

Anested loopisstartedto plot the actualtrack. The G_bidcnt variable contains thetotal
number ofBeacon tracks found. This sets the limitonthenumber offlights plotted. The
Beaconindexfile fortheBeaconID specifiedandthe flight number,start andendtimes,
start and end elevations are printedonthe plot. Iftheflight is already attached toa
green strip, the coloris displayed as yellow forthatflight. Ifthefltindvariable is20r
greater, thena*will beplotted nextto the flight. Thisshows thatthe Beacon ID changed
during flight or it may have changed multiple times.

The imer loop plots a data point from the radar file. The px and py are calculated in
pixels and plotted. Adjustments are made to the x and y coordinates to account for the

slant range of the track. The abqadjust and ptxadjust routines convert slant range to
projected ground coordinates.

Called from: input_data

Calls routines:
safescrt RAN.READ
ptxadjust abqadjust
mid_extract

Sample call: plotbids(bidrec);

Return value: None

Messages returned: None

**/

/*FF***

Function name: readinpfile

Purpose:
This routine is used exclusively forbatchmodeonly. Theresponse fileisreadandthe
global variables forBeaconID, aircraft ID, aircrafttype, and time are populated. Five
fields mustbepresent or

Called ffom:input_data

Calls routines: readlin

an error message will printout.

Sample call: rtnval =readinpfileo;

Return value: Integer value
SCANFERR -> invalid field count
1 -> success

Messages returned:
If an invalid field is found in the response file, the following
message will appear:

Illegal record found in batch file B950521.RES

***** ***** ***** ***** ***** ***/

62

/*FF*******************~****************************~******~******~**e***

Function name: setupgs

Purpose:
Setup routine forgreen strip input; capture theinitials forthedata entryperson. The
initials areusedto update theBIDindexfile. This routine is called only once upon start
up.

The bulk of this routine is programmed for batch mode which is obsolete. Batch mode will
use a response file which contains data like aircraft type and time. The sequence file is
used as an integer counter to keep track of which records in the response file have been
plotted. This permits Called from to stop and start the program gracefully.

Called from: input_data

Calls routines: None

Sample call: rtnval = setupgso;

Return value: Integer value
1-> Data from keyboard
2-> Data from batch file

Messages returned:
If the response file (.RES) cannot be opened, the following message
will appear:

Inside setupgs module.
Error opening input file B950521.RES

If there is an error creating the sequence file, the following
message will appear:

Inside setupgs module.
Error creating sequence file B950521.SEQ

If there is an error opening the sequence file, the following
message will appear:

Inside setupgs module.
Error opening sequence file B950521.SEQ

***** ***** ***** ***** ***** *********#*************************************/

63

/*FF**#********************

Function name: read_bid_file

Purpose:
Readalinefrom theBIDfile;input thelocationand updatetheBID countforthegiven
flight.

Called fiom:input_data

Calls routines:
RAN_REA.D mid_extract

Sample call: read_bid_file(loc);

Returnvalue:None

Messages returned: None
**/
f*FF**e~**ee***

Function name: upd_bid_file

Purpose:
Update the BeaconID filewith the green strip green strip information. The existing
information isreadfiomthe BID file. Iftherecord has not been updated (matching= O),
thenupdatetheVFR/IFR,aircraft id, aircraft type,andtimefor thecurrentrecord. Ifthe
recordhasbeen updated already then compare theaircraftid, type, andtime fromtheold
tothenew. Ifthere are differences then allow the usertosave theoldstuffor overwriteit
with the new information. Iftheuser decides notto overwrite, then an option isava.ilable
tosavethegreen strip information totheunresolved filewithpath=3.

Called from: get_flt_num

Calls routines:
RAN.READ mid_extract
squeeze STRUPD
RAN_WRITE write.unr.data

Sample call: rtnval = upd_bid_file(recarr, scanfcnt);

Return value: Integer value
O -> success
1-> Replay plot and re-enter flight numbers

Messages returned: None

64

**/

/*FF***

Function name: write_unr_data

Purpose:
Writes green strip information to unresolved file.

Calledfiom:
input_data get_flt_num
upd_bid_file

Calls routines: None

Sample call: write_unr_datao;

Returnvalue:None

Messages returned:
Iftheunresolved file cannotbeopened, the followingmessage
will appear:

Error opening unresolved file : B950521.UNR

**/

5,7.4. Plot Display and Data input Function Headers
/*FF**$

Function name: abqadjust

Purpose:
Plotadjustroutine forAlbuquerque data; convertthe xandyslantrange backtoprojected
ground coordinates. No offset is necessary because theradar antenna is the O,Oreference
pointforallthe rawdata.

Called&om:
trkplot plotbids

Calls routines: None

Sample call: abqadjust(xf, yf, &newxf, &newyf, elev);

Returnvalue:None

Messages returned: None

65

**/

/*FF*****************************+****************#******+*#*************

Function name: getcfg

Purpose:
WrittenbyDavid Skogmo4/5/91
adaptedtoread bothPantexand AlbuquerquePSW .CFGfiles:J. Tenney 2/14/95

getcfgreadsthe file PSMAP.CFG andloads thesite specific data into the SARSprogram
globalvariables. Thefirstfivelines ofthePSMAP.CFG fileshouldlook as shownbelow.
Itisessentialthat theitems beinexactly this orderandthat alldataentriesbe separated
fromanyannotation bywhitespace.All Iines shouldterminate in \n. Thisiscertainly true
also ofthelastline.

0.00 ;xd=eastiwest coordinate in statute miles from radar
0.00 ;yd=northhouth coordinate in statute miles from radar
196.8 ;rcell=beacon range cell size in feet
196.8 ;rrcell=primary range cell size in feet
11.52 ;G_maxrg=coverage radius in miles

Called from: safescrt

Calls routines: None

Sample call: getcfgo;

Return value: None

Messages returned:
If the PSMAP.CFG file does not exist, the next message will appear:

Trouble with PSMAP.CFG file. Fatal error. Press any key.

***** ***** ***** ***** ***** ***/

/*IF****+****** ***** +**** *******+**+**********+************************+*

Function name: ptxadjust

Purpose:
Plot adjust routine for Pantex site. This routine converts the recorded slant range back to
ground coordinates. The offset of x=38280 feet, y=38174 feet is used because these offsets
are embedded in the recorded data. The radar antema location is different from the Zone
4 recording site. The raw data is tracked from the Zone 4 coordinate. Therefore the offset
must be applied to the data in order to calculate the correct position of the flight projection
to the surface.

66

Called from: trkplot plotbids

Calls routines: None

Sample call: ptxadjust(xf,yf,&newxf,&newyf,elev);

Return value: None

Messages returned: None

**/

/*FF***************************$**$

Functionname: safescrt

Purpose:
WrittenbyDavid Skogmo3/20/91; adapted fiomautoscrn forzone4program

safescrtprepares screenforRAMS display. Itreads thesite specific parameters from afile
called PSMAP.CFG. Itdisplays amap andits associated textfile. The map file is expected
tobealistofpoints (onepointperline) .Eachlinegives thexand ycoordinates andthe
color. These numbers are separated by spaces. To make a black dot at 230,335; enter 230
3350 etc. The text file should give the x and y coordinates then the color. This is followed
by the text string to be placed at x,y. Since we use the function sscanf to read this string,
it should contain no spaces. If you need a space, use the underline _ char. The map file
should be named PSMAP.MAP and the text file should be named PSMAP.TXT.

Called from: main display_plot plotbids

Calls routines: getcfg

Definitions: bkgd

Sample call: safescrto;

Return value: None

Messages returned:
If the PSMAP.MAP file does not exist in the local directory, the
following message will appear on the screen:

Cannot open PSMAP.MAP file. Press any key.

If the PSMAP.TXT file does not exist in the local directory, the
following message will appear on the screen:

Cannot open PAMAP.TXT file. Press any key.
***** ***** ***** ***#* ***** ***/

67

/*FF***********#***#*

Function name: trkplot

Purpose:
Plots aflight ofdatapoints one pointatatime. The dataisreadfrom the Beacon radar
file, G_trl@e. The Borland graphics libraryroutines areused throughout this routine.
Composite mode is supported also; this mode plots every data point in the file while review
mode plots an individual track.

Called from:
main display_plot

Calls routines:
ptxadjust abqadjust

Sample call: trkplot(l);

Return value: None

Messages returned: None

***** ***** ***** ***** ***** ***/

/*FF*********************************%******************+*****#****e*#***

Function name: xstrz

Purpose:
~trdraws thechmacter sttingat point x,yinthe passed color inxor mode. ‘l?hepointx,y
is taken as the bottom left corner of the string space. xstrz written by David Skogmo
11/26/93

Called from: trkplot

Calls routines: xordot

Sample call: xstrz(bufid, px+2, py-2, WHITE);

Return value: None

Messages returned: None

***** ***** ***** ***** ***** ***/

68

*FF****~**~****S

Function name: xordot

Purpose:
xordot: plotsa dotinxormode atxx,xy

Calledfiom:.xstrz

Calls routines:
getpixel putpixel

Sample call: xordot(xdot,ydot, color);

Returnvalue: None

Messages returned: None

**/

5.7.5. General Purpose Function Headers

/*FF***************************************~*********~******************e

Function name: STRUPD

Purpose:
Replace the source stringwiththe replacement string. Length ofreplacement stringmust
notexceedsource string.

Called from: upd_bid_file

Calls routines: None

Sample call: STRUPD(string, vfrifr, 77);

Return value: Integer value
O-> success

-1->failure

Messages returned:
Ifthesourcestring iszerolength,the nextmessagewill appear:

Source string is zero length.

If the replacement string is zero length, the next message will appe~
Replacement string is zero length.

69

If the replacement string is longer than the source string, the
next message will appear:

Replacement string is longer than source string.

If the starting position is greater than the source string, the
next message will appear:

Starting location is greater than length of source string.

***** ***** ***** ***** ***** ***/

/*FF*************************************+*%****************#********~**$

Function name: RAN_READ

Purpose:
Doarandomread ofselected file; calculate the offsetintothe file; thefileis assumed fixed
length.

Calledfiom:
read_bid_file input_data
plotbids get_flt_num
upd_bid_file

Calls routines:

Sample call: RAN_READ(G_bidfile, bidloc, BIDBYTES, string);

Return value: Integer which contains number of characters read

Messages returned: None

**/

/*FF***~****~**

Function name: W_WRITE

Purpose:
Doarandomwrite intotheselected file; thefileis
assumed fixed length.

Called fi-om:upd_bid_file

Calls routines: None

Sample call: RAN_VVRITE(G_bidfile, recarr[il, BIDBYT’ES, string);

Return value: Integer value whichisnurnbers ofcharacters written

70

Messages returned: None
**/

/*FF***

Function name: readlin

Purpose:
readlin reads characters from the passed stream into the passed bufferuntilthe \ncharis
encountered. Itterminates thebufferwith aO. Itreturns the number ofcharsread. Ifthe
end offileis encountered, itreturns O. WrittenbyDavidSkogmo4/5/91

Called from:
trkplot safescrt
getcfg display_plot
pop.bid.arr input_data
plotbids setupgs
readinpfile

Calls routines: None

Sample call: i = readlin (string, G_bidfile);

Return value: Integer value: number of bytes

Messages returned: None

read in

**/

/*FF***~****~**********$****$********************+***********************

Function name: filesize

Purpose:
This routine computes the file sizeinbytes -copiedfkomthe Borlandlibrary reference
manual.

Called fkom:pop_bid_arr

Calls routines:None

Sample call: bytecnt = filesize(G_bidfile);

Returnvalue: long value representing thebyte countof theinputfile.

Messages returned: None

**/

71

/*FF*******************+******************+************+*******++**e*****

Function name: table_search

Purpose:
Do a linear search for the integer in the BID array.

Called from:.
display_plot input_data

Sample call: 10C= table_search(G_bid, G_maxflt, G_bid_choice);

Returnvalue: Integer value: locationof matchininteger array
-lisreturnedif nomatchis found

Messages returned: None

**/

/*FF~****~****#***************~******~**********~***************~********

Function name :get_int

Purpose:
Checkstheinput stringforavalid integervaluewithin mirdmaxrange.

Called fiom:input_data

Calls routines: None

Sample call: choice= get_int(’’Enter integer: ’’,O,4)

Return value: Integer value returned betweenminand maxrange

Messages returned: None

**/

/*FF**~********************

Function name: getreply

Purpose:
GetaYes or No response.

Called from: display_indata

Calls routines: None

72

Sample call: response = getreply(prompt);

Return value: Integer value
1 for Yes
Ofor No

Messages returned: None

**/

/*FF**$**************

Function name: mid.extract

Purpose:
Returns middle

Called from:
read_bid_file
plotbids
upd_bid_file

portionofstrin~ likeQuickBASIC ‘sMID$function

input_data
get_flt_num

Calls routines: None

Sample call: mid_extract(instring, outstring, start_loc, num_of_chars)
num_ofchars shouldstartat Oforcounting

Return value: Integer -> number ofcharacters copiedor
ZERO_LENGTH_STR if input string is null

Messages returned: None
**/

/*FF***************************************~****~****~****~**************

Functionname: char_count

Purpose: Count thenumber ofletters in astringandreturn thecount.

Calledfiom: chk_plt_num

Sample call: spacecnt = ch=_count(dest, BLANK);

Return value: Integer value returns number ofoccurrencesof match.

Messages returned: None

**/

73

/*FF*******~***+*******

Function name :squeeze

Purpose: Delete all character c from strings

Called from: upd_bid_file

Sample call: squeeze(’’This is atest’’, BLA.NK);

Returnvalue: None

Messages returned: None

**/

74

5.8. Pantex Plot Projection

One of the purposes of the plotflt program is to provide a visual representation of the
ground projections of aircraft for areas of interest. Three data values are provided to this
code in the radar input file (e.g., B950211.DAT). These reported data represent the x and
y components of the translated slant range and the altimeter reading from the aircraft.
To plot the actual ground projections, the aircraft altitude must be accounted for. This
requires several steps. First, the translated components must be translated back into the
radar coordinate system. This is done to insure stability in the solutions to the equations
when solving for the true ground projections. Figure 5-5 shows the reported datum in the
X, Y rectangular coordinate system (xloc, yloc). This coordinate system for the Pantex site
is located 7.23 miles north and 7.25 miles east of the actual radar system (these values are
contained in the PSMAP.CFG configuration file). The datum is first translated to the X’,
Y’ coordinate system.

Y Y

4 I 0,0..

7.23mihxl ‘lantd

Xloc, yloc

ax

Radar Site x’

Figure 5-5. Radar Source and Recording Coordinate Systems

Once the datum is translated into the radar coordinate system, the following equations
are solved to calculate the actual ground projections before plotting.

x’10C = xloc - (-38280 feet)

75

y’10C = ylOC- (-38174 feet)

Slant Range =
J_

x’ 10C2+ y’ 10C2

The airport elevation of 3500 feet must be subtracted from the altitude to get the actual
elevation from the ground to the aircraft. (h

= h - 3500). Figure 5-6 shows the three

dimensional coordinate system and the projected values.

The curvature of the earth is insignificant for the recorded distance; therefore it is ignored
in the calculation.

z

....................................

...........................----.J
................---

...............

ix y’10C

Figure 5-6. Pantex Slant Range Diagram

The X and Y coordinates represent the slant range vectors of the flight. x’ and y’ represent
the actual ground projections of the aircraft. 0, is the azimuth angle; h is the altimeter

reading to sea level; r is the projected ground distance.

solving for r, e, x’, and Y’:

Slant Range = J~ = J=

76

.. .
\ \ \\\\\\\

\
\\
\
\
\

i
I
\

●
I... ...
I Y

..,.. 1
I .;

......X \ -----x’ 10C
.. I ..

t . ..

1 .:...

Solving for r:

r= J X’10C2 +y’10C2- hz

Solving for &

tan (1=y’10C / x’ Ioc

e = tan-l(y’10C/X’10C)

Solving for y’:

y’=rsin(l

Solving for x’:

x’ = r cos e

To obtain the true projection, the equations x - (-38280) and y - (-38174) are used. These
reduce to x + 38280 and y + 38174. Next, the r value, azimuth angle, projected x and
projected y values are computed and plotted.

The corresponding Fortran code to solve these equations is listed:

h = elev -3500

if (h .lt. O) h = O

rl = (x+38280.)Z + (y+38174.)z - hz

r = sqrt(rl)

angle = atan2 (y+38174., x+38280.)

x’ = r * cos(angle) -38280.

y’ = r * sin(angle) -38174.

77

5.9. VGA Pixel Coordinate System

The safescrt function displays the streets, labels, and radii around the local airport. The
VGA screen is divided into pixels (6A0 in x, and 480 in y). At Pantex, two targets were
selected (Zone 4 and Zone 12) and plotted on the screen in pixels. The calculations for
these points are shown below. The data is recorded from coordinate 38280 east (7.25mi),
38174 north (7.23mi)(400x, 240Y in pixels). This is the center of the screen in Fi@re 3-1.

The distance from the radar source at Pantex (0,0 coordinate) to the two targets [Ref. 3] is
shown in Figure 5-5. Distance from radar source to Zone 4 is 37187 feet north (7.04
miles), 41915 feet east (7.94 miles); distance from radar source to Zone 12 is 29103 feet
north (5.51 miles), 44912 feet east (8.51miles).

North

(pixels)

Radar src

Center (400, 240)
+

“+
Zone 4 (417, 245)

+ Zone12 (431, 282)

0,0 East (pixels)

Figure 5-7. Pantex Pixel Coordinates

The coverage radius for the Amarillo radar data is 9.82 statute miles. This value is
obtained fr~m the PSMA.P.CFG configuration file. The scale factor for the data can be
calculated as follows:

scale factor = 240./max coverage radius

scale factor = 240./9.82 = 24.44 pixels/mile

Zone 4 distance from source is 7.94 mi. east, 7.o4 mi. north

Offset from center point is:

7.94-7.25 = .69x 24.44 pixels = 17 pixels east

7.23-7.04 = .19 x 24.44 pixels = 5 pixels south

Zone 4 coordinate is 400 + 17 east= 417 east (pixels)

Zone 4 coordinate is 240 + 5 south= 245 north (pixels)

78

Zone 12 distance from source is

Offset from center point is:

8.51-7.25 = 1.26x 24.44 pixels

7.23-5.51 = 1.72x 24.44 pixels

8.51 mi east, 5.51 mi. north

= 31 pixels east

=42 pixels south

Zone 12 coordinate is 400 +31 east= 431 east (pixels)

Zone 12 coordinate is 240 +42 south= 282 north (pixels)

The target coordinates (417,245 and 431,282) are plotted in the safescrt function if the
Pantex data is plotted.

The Albuquerque data is centered around the radar source at 0,0; therefore an offset
calculation is not required. However, since the Albuquerque data is given in slant range
coordinates, it is also projected to ground level coordinates. The abqadjust routine adjusts
the data before the points are displayed.

79

Intentionally Left Blank

6. References

1. David Skogmo, Sandia National Laboratories, Radar Airspace Monitoring System,
November, 1991.

2. John Tenney, Sandia National Laboratories, Plot-Flight User’s Manual Ver 1.0,
SAND95-1819, August, 1995

3. Tetra-Tech, Distance from Radar Source to the Zone 4 and Zone 12 Points, Internal
Memorandum, March, 1995

81

Intentionally Left Blank

82

Distribution:

1

1
1

1
1

1
1

1

1
1
10

MS0405
MS0405
MS0405
MS0491
MS0491
MS0491
MS0491
MS0491
MS0491
MS0491
MS0491

1 MS9018
5 MS0899
1 MS0619
2 MSO1OO

M. P. Bohn, 12333
D. D. Carlson, 12333
T. R. Jones, 12333
M. A. Dvorack, 12333
N. R. Grandjean, 12333
S. A. K.alumba, 12333
M. C. Krawczyk, 12333
Y. T. Lin, 12333
R. J. Roginski, 12333
R. E. Smith, 12302
J. L. Temey, 12333

Central Technical Files, 8523-2
Technical Library, 4414
Print Media, 12615
Document Processing, 7613-2
for DOE/OSTI

.-

